Display options
Share it on

Parasit Vectors. 2009 Jun 25;2(1):27. doi: 10.1186/1756-3305-2-27.

In silico analysis of the cyclophilin repertoire of apicomplexan parasites.

Parasites & vectors

Jürgen Krücken, Gisela Greif, Georg von Samson-Himmelstjerna

Affiliations

  1. Institute for Parasitology, University of Veterinary Medicine Foundation, Bünteweg 17, 30559 Hannover, Germany. [email protected].

PMID: 19555495 PMCID: PMC2713222 DOI: 10.1186/1756-3305-2-27

Abstract

BACKGROUND: Cyclophilins (Cyps) are peptidyl cis/trans isomerases implicated in diverse processes such as protein folding, signal transduction, and RNA processing. They are also candidate drug targets, in particular for the immunosuppressant cyclosporine A. In addition, cyclosporine is known to exhibit anti-parasitic effects on a wide range of organisms including several apicomplexa. In order to obtain new non-immunosuppressive drugs targeting apicomplexan cyclophilins, a profound knowledge of the cyclophilin repertoire of this phylum would be necessary.

RESULTS: BLAST and maximum likelihood analyses identified 16 different cyclophilin subfamilies within the genomes of Cryptosporidium hominis, Toxoplasma gondii, Plasmodium falciparum, Theileria annulata, Theileria parva, and Babesia bovis. In addition to good statistical support from the phylogenetic analysis, these subfamilies are also confirmed by comparison of cyclophilin domain architecture. Within an individual genome, the number of different Cyp genes that could be deduced varies between 7-9 for Cryptosporidia and 14 for T. gondii. Many of the putative apicomplexan cyclophilins are predicted to be nuclear proteins, most of them presumably involved in RNA processing.

CONCLUSION: The genomes of apicomplexa harbor a cyclophilin repertoire that is at least as complex as that of most fungi. The identification of Cyp subfamilies that are specific for lower eukaryotes, apicomplexa, or even the genus Plasmodium is of particular interest since these subfamilies are not present in host cells and might therefore represent attractive drug targets.

References

  1. Parasitology. 1992;105 Suppl:S25-40 - PubMed
  2. Bioinformatics. 2007 Nov 1;23(21):2947-8 - PubMed
  3. Parasitology. 2006 Jun;132(Pt 6):867-82 - PubMed
  4. Essays Biochem. 2005;41:15-30 - PubMed
  5. Int J Parasitol. 2006 Mar;36(3):261-76 - PubMed
  6. Exp Parasitol. 2008 Feb;118(2):275-9 - PubMed
  7. Genome Biol. 2005;6(7):226 - PubMed
  8. BMC Genomics. 2006 Sep 22;7:244 - PubMed
  9. Mol Biochem Parasitol. 2003 Dec;132(2):59-66 - PubMed
  10. Front Biosci. 2004 Sep 01;9:2420-46 - PubMed
  11. Biochem Pharmacol. 1994 Aug 3;48(3):495-503 - PubMed
  12. Int J Parasitol. 2003 Aug;33(9):987-96 - PubMed
  13. Bioinformatics. 2001;17 Suppl 1:S140-8 - PubMed
  14. Antimicrob Agents Chemother. 1984 Jul;26(1):26-30 - PubMed
  15. Agents Actions. 1981 Jul;11(4):380-3 - PubMed
  16. Nat Protoc. 2007;2(4):953-71 - PubMed
  17. RNA. 1998 Feb;4(2):127-41 - PubMed
  18. Traffic. 2008 Feb;9(2):166-75 - PubMed
  19. New Biol. 1992 May;4(5):421-9 - PubMed
  20. Mol Biol Evol. 2007 Sep;24(9):1926-33 - PubMed
  21. Science. 2007 Sep 28;317(5846):1921-6 - PubMed
  22. FEBS J. 2008 May;275(9):2283-95 - PubMed
  23. Mol Biochem Parasitol. 1999 Apr 30;99(2):167-81 - PubMed
  24. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W327-31 - PubMed
  25. Front Biosci. 2000 Sep 01;5:D821-36 - PubMed
  26. Yeast. 2005 Sep;22(12):927-45 - PubMed
  27. Vet Parasitol. 2004 May 7;121(1-2):65-77 - PubMed
  28. Mol Cell Biol. 2006 Jul;26(14):5528-43 - PubMed
  29. Biochim Biophys Acta. 1992 Feb 14;1138(2):115-21 - PubMed
  30. Proteomics. 2004 Jun;4(6):1581-90 - PubMed
  31. Nature. 2005 Mar 31;434(7033):658-62 - PubMed
  32. Nature. 2005 Mar 24;434(7032):462-9 - PubMed
  33. J Antimicrob Chemother. 2007 Feb;59(2):197-203 - PubMed
  34. Genetics. 2000 Dec;156(4):1503-17 - PubMed
  35. Trends Biochem Sci. 1999 Jan;24(1):34-6 - PubMed
  36. Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12005-10 - PubMed
  37. J Biol Chem. 2006 Jun 9;281(23):15900-8 - PubMed
  38. Nucleic Acids Res. 2009 Jan;37(Database issue):D205-10 - PubMed
  39. Antimicrob Agents Chemother. 1997 Sep;41(9):1859-66 - PubMed
  40. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13093-8 - PubMed
  41. Infect Immun. 1987 Jul;55(7):1616-21 - PubMed
  42. Exp Parasitol. 1989 Apr;68(3):289-96 - PubMed
  43. Antimicrob Agents Chemother. 1998 Apr;42(4):843-8 - PubMed
  44. Microbiol Rev. 1993 Dec;57(4):953-94 - PubMed
  45. Nature. 2001 Nov 22;414(6862):450-3 - PubMed
  46. RNA. 1997 Dec;3(12):1374-87 - PubMed
  47. J Biol Chem. 2005 Jul 1;280(26):24308-14 - PubMed
  48. Infect Immun. 1982 Sep;37(3):1093-100 - PubMed
  49. Gene. 2001 Dec 12;280(1-2):19-26 - PubMed
  50. Cell Mol Life Sci. 1999 Mar;55(3):423-36 - PubMed
  51. Syst Biol. 2003 Oct;52(5):696-704 - PubMed
  52. Mol Biochem Parasitol. 2005 May;141(1):29-37 - PubMed
  53. RNA. 2006 Apr;12(4):631-43 - PubMed
  54. Mol Biol Evol. 2007 Aug;24(8):1596-9 - PubMed
  55. Comp Funct Genomics. 2005;6(5-6):277-300 - PubMed
  56. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4430-5 - PubMed
  57. J Biol Chem. 2002 Apr 26;277(17):14925-32 - PubMed
  58. Bioinformatics. 2001 Sep;17(9):847-8 - PubMed
  59. Genome Res. 2004 Oct;14(10B):2162-8 - PubMed
  60. Agents Actions. 1981 Dec;11(6-7):770-3 - PubMed
  61. Infect Immun. 2005 Aug;73(8):5093-100 - PubMed
  62. Eur J Biochem. 1995 Sep 15;232(3):765-72 - PubMed
  63. Trends Parasitol. 2006 Apr;22(4):168-74 - PubMed
  64. Cell Mol Life Sci. 2006 Dec;63(24):2889-900 - PubMed
  65. Trop Med Parasitol. 1991 Dec;42(4):375-80 - PubMed
  66. Genome Res. 2002 Oct;12(10):1619-23 - PubMed
  67. Brief Bioinform. 2008 Jul;9(4):299-306 - PubMed
  68. Comput Appl Biosci. 1992 Jun;8(3):275-82 - PubMed
  69. Eur J Biochem. 1996 Nov 1;241(3):779-86 - PubMed
  70. FEBS Lett. 2008 Jul 9;582(16):2345-51 - PubMed
  71. Rev Physiol Biochem Pharmacol. 2003;148:105-50 - PubMed

Publication Types