Display options
Share it on

Behav Brain Funct. 2009 Jun 25;5:25. doi: 10.1186/1744-9081-5-25.

A no-go related prefrontal negativity larger to irrelevant stimuli that are difficult to suppress.

Behavioral and brain functions : BBF

Alice M Proverbio, Marzia Del Zotto, Nicola Crotti, Alberto Zani

Affiliations

  1. Dept, of Psychology, University of Milano-Bicocca, Milan, Italy. [email protected].

PMID: 19555496 PMCID: PMC2708178 DOI: 10.1186/1744-9081-5-25

Abstract

BACKGROUND: There is a wide debate in the literature about whether N2/P3 effects in no-go trials reflect the inhibition of an intended action, or the absence of a negative movement-related potential typical of go trials. The aim of this study was to provide an objective measure of the suppression of irrelevant information (in a conjoined selective visual attention task) under conditions that were perfectly comparable from the viewpoint of the motoric processes involved.

METHODS: Twenty-nine right-handed students took part in the study. Their EEGs were recorded from 128 scalp sites while they viewed gratings of four different spatial frequencies (from 0.75 to 6 c/deg) randomly flashed in the four upper and lower quadrants of the visual field. The tasks consisted of attending and responding to a conjunction of spatial frequency and space location. Intermediate frequencies (1.5 and 3 c/deg) acted as distracters or lures. Analysis of the ERPs elicited by the same physical stimulus, close in spatial frequency to the actual target and falling within the attended quadrant (pseudo-target) vs. a non-target location, allowed us to identify the time course and neural bases of brain activation during the suppression of irrelevant information.

RESULTS: FAs were on average 9% for pseudo-targets and 0.2% for other types of lures, indicating that the former were more difficult to suppress. Target-related ERP components (occipito/temporal selection negativity, posterior P3b and precentral motor N2) were greater to pseudo-targets than other distracters. A large prefrontal negativity (370-430 ms) was also identified, much larger to pseudo-targets than non-targets (and absent in response to real targets), thus reflecting response inhibition and top-down cognitive control processes.

CONCLUSION: A LORETA inverse solution identified the neural generators of this effect in the left dorsolateral prefrontal cortex (DLPF), left and right fusiform gyri and bilateral superior temporal cortices. The tentative hypothesis is advanced that these activations might reflect the modulatory effects exerted by the fronto/temporal circuit for the suppression of irrelevant information.

References

  1. Phys Med Biol. 2007 Apr 7;52(7):1783-800 - PubMed
  2. BMC Neurosci. 2010 May 06;11:59 - PubMed
  3. J Cogn Neurosci. 1998 Mar;10(2):167-77 - PubMed
  4. Clin Neurophysiol. 2001 Apr;112(4):713-9 - PubMed
  5. Eur J Neurosci. 2007 Sep;26(5):1381-5 - PubMed
  6. Neuroreport. 1995 Aug 21;6(12):1605-10 - PubMed
  7. Electroencephalogr Clin Neurophysiol. 1995 Jan;96(1):76-92 - PubMed
  8. Brain Cogn. 1997 Jul;34(2):311-20 - PubMed
  9. Electroencephalogr Clin Neurophysiol. 1996 Jul;99(1):19-27 - PubMed
  10. Electroencephalogr Clin Neurophysiol. 1985 May;60(5):423-34 - PubMed
  11. Clin Neurophysiol. 2008 Mar;119(3):704-714 - PubMed
  12. J Neurosci. 2000 May 1;20(9):RC72 - PubMed
  13. Neuropsychologia. 2008 Apr;46(5):1290-7 - PubMed
  14. Nat Rev Neurosci. 2008 Aug;9(8):613-25 - PubMed
  15. Electroencephalogr Clin Neurophysiol. 1998 Jul;108(4):406-13 - PubMed
  16. Electroencephalogr Clin Neurophysiol. 1992 Jun;82(6):477-82 - PubMed
  17. Percept Psychophys. 1982 Nov;32(5):465-72 - PubMed
  18. Eur J Neurosci. 2006 Mar;23(6):1658-64 - PubMed
  19. Brain Res Cogn Brain Res. 2005 Feb;22(2):221-31 - PubMed
  20. Neuropsychopharmacology. 2008 Nov;33(12):2860-9 - PubMed
  21. Biol Psychol. 2006 Oct;73(3):298-313 - PubMed
  22. Electroencephalogr Clin Neurophysiol. 1978 Nov;45(5):628-40 - PubMed
  23. Science. 1968 Dec 6;162(3858):1146-8 - PubMed
  24. Science. 2000 Jun 9;288(5472):1835-8 - PubMed
  25. Annu Rev Neurosci. 1995;18:193-222 - PubMed
  26. Int J Psychophysiol. 1994 Oct;18(1):49-65 - PubMed
  27. J Cogn Neurosci. 2010 Mar;22(3):543-53 - PubMed
  28. Hum Brain Mapp. 2009 Sep;30(9):3043-56 - PubMed
  29. J Neurosci. 2006 Mar 1;26(9):2424-33 - PubMed
  30. J Cogn Neurosci. 2005 Nov;17(11):1679-90 - PubMed
  31. Annu Rev Neurosci. 2001;24:167-202 - PubMed
  32. Nat Neurosci. 2000 Apr;3(4):399-403 - PubMed
  33. J Physiol. 1969 Jul;203(1):237-60 - PubMed
  34. Brain Res Cogn Brain Res. 1998 Apr;6(4):321-34 - PubMed
  35. Clin Neurophysiol. 2002 Jul;113(7):1172-82 - PubMed
  36. Neuroreport. 2008 Jan 8;19(1):121-5 - PubMed
  37. Clin Neurophysiol. 2001 Sep;112(9):1676-84 - PubMed
  38. Brain Topogr. 2004 Summer;16(4):287-90 - PubMed
  39. Science. 2004 Feb 13;303(5660):1023-6 - PubMed
  40. Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):277-92 - PubMed
  41. Vision Res. 1982;22(5):545-59 - PubMed
  42. Clin Neurophysiol. 1999 Jun;110(6):1058-72 - PubMed
  43. Biol Psychol. 1988 Aug;27(1):51-8 - PubMed

Publication Types