Display options
Share it on

Transl Oncol. 2009 Aug 18;2(3):138-45. doi: 10.1593/tlo.09106.

Cancer abolishes the tissue type-specific differences in the phenotype of energetic metabolism.

Translational oncology

Paloma Acebo, Daniel Giner, Piedad Calvo, Amaya Blanco-Rivero, Alvaro D Ortega, Pedro L Fernández, Giovanna Roncador, Edgar Fernández-Malavé, Margarita Chamorro, José M Cuezva

Affiliations

  1. Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, C.S.I.C.-U.A.M., Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28049 Madrid, Spain.

PMID: 19701498 PMCID: PMC2730139 DOI: 10.1593/tlo.09106

Abstract

Nowadays, cellular bioenergetics has become a central issue of investigation in cancer biology. Recently, the metabolic activity of the cancer cell has been shown to correlate with a proteomic index that informs of the relative mitochondrial activity of the cell. Within this new field of investigation, we report herein the production and characterization of high-affinity monoclonal antibodies against proteins of the "bioenergetic signature" of the cell. The use of recombinant proteins and antibodies against the mitochondrial beta-F1-ATPase and Hsp60 proteins and the enzymes of the glycolytic pathway glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase M2 in quantitative assays provide, for the first time, the actual amount of these proteins in normal and tumor surgical specimens of breast, lung, and esophagus. The application of this methodology affords a straightforward proteomic signature that quantifies the variable energetic demand of human tissues. Furthermore, the results show an unanticipated finding: tumors from different tissues and/or histological types have the same proteomic signature of energetic metabolism. Therefore, the results indicate that cancer abolishes the tissue-specific differences in the bioenergetic phenotype of mitochondria. Overall, the results support that energetic metabolism represents an additional hallmark of the phenotype of the cancer cell and a promising target for the treatment of diverse neoplasias.

References

  1. Science. 2006 Jun 16;312(5780):1650-3 - PubMed
  2. Nature. 2008 Mar 13;452(7184):181-6 - PubMed
  3. Nature. 2007 Jun 7;447(7145):741-4 - PubMed
  4. Nature. 1976 Jun 24;261(5562):702-5 - PubMed
  5. Carcinogenesis. 2008 Nov;29(11):2053-61 - PubMed
  6. Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):5992-7 - PubMed
  7. Int J Cancer. 2008 Jul 15;123(2):476-483 - PubMed
  8. Cancer Res. 2002 Nov 15;62(22):6674-81 - PubMed
  9. Nat Genet. 2008 May;40(5):499-507 - PubMed
  10. Cell. 2000 Jan 7;100(1):57-70 - PubMed
  11. Carcinogenesis. 2006 May;27(5):925-35 - PubMed
  12. Int J Colorectal Dis. 2008 Dec;23(12):1223-32 - PubMed
  13. J Biol Chem. 2006 Jan 13;281(2):977-81 - PubMed
  14. Cancer Res. 2005 Apr 15;65(8):3162-70 - PubMed
  15. Curr Opin Biotechnol. 2006 Aug;17(4):415-21 - PubMed
  16. Cancer Res. 2002 Jul 15;62(14):3909-13 - PubMed
  17. PLoS One. 2006 Dec 20;1:e107 - PubMed
  18. Cancer Cell. 2007 Jan;11(1):37-51 - PubMed
  19. Nature. 2008 Mar 13;452(7184):230-3 - PubMed
  20. Biochem J. 2004 Feb 15;378(Pt 1):17-20 - PubMed
  21. Novartis Found Symp. 2001;240:251-60; discussion 260-4 - PubMed
  22. Mol Cell. 1998 Feb;1(3):327-36 - PubMed
  23. Cell Metab. 2008 Jan;7(1):11-20 - PubMed
  24. Carcinogenesis. 2004 Jul;25(7):1157-63 - PubMed
  25. J Natl Cancer Inst. 2006 Oct 18;98(20):1462-73 - PubMed
  26. Trends Cell Biol. 2008 Apr;18(4):165-73 - PubMed
  27. Cancer Res. 2006 Sep 15;66(18):8927-30 - PubMed
  28. Cancer Res. 2007 Oct 1;67(19):9013-7 - PubMed
  29. J Bioenerg Biomembr. 2007 Jun;39(3):259-65 - PubMed
  30. Cell. 2003 Nov 26;115(5):629-40 - PubMed
  31. J Clin Invest. 2007 Mar;117(3):719-29 - PubMed
  32. Cancer Res. 2007 Apr 1;67(7):3364-70 - PubMed
  33. Carcinogenesis. 2005 Dec;26(12):2095-104 - PubMed

Publication Types