Display options
Share it on

Phys Chem Chem Phys. 2005 Mar 21;7(6):1164-70. doi: 10.1039/b415435e.

Long-lived light-induced metastable states in trans-[Ru(NH3)4(H2O)NOCl3 x H2O and related compounds.

Physical chemistry chemical physics : PCCP

Dominik Schaniel, Theo Woike, Bernard Delley, Colette Boskovic, Daniel Biner, Karl W Krämer, Hans-Ueli Güdel

Affiliations

  1. Institut für Mineralogie & Geochemie, Universität zu Köln, Zülpicherstrasse 49b, 50674 Köln, Germany. [email protected]

PMID: 19791328 DOI: 10.1039/b415435e

Abstract

The existence of two light-induced long-lived metastable states SI, SII in irradiated trans-[Ru(NH3)4(H2O)NO]Cl3 x H2O and trans-[Ru(NH3)4(OH)NO]Cl2 is revealed by differential scanning calorimetry measurements and calculations based on density functional theory. Irradiation with light in the blue spectral range leads to the population of SI, while SII can be obtained by transferring SI into SII with irradiation of light in the near infrared spectral range. The population and transfer of the metastable states is described by exponential functions and the thermal decays are evaluated according to Arrhenius' law, yielding activation energies of EA(SI) = 0.95(3) eV, EA(SII) = 0.69(3) eV and frequency factors of Z(SI) = 2 x 10(14) s(-1), Z(SII) = 3 x 10(13) s(-1) for trans-[Ru(NH3)4(H2O)NO]Cl3 x H2O, while EA(SI) = 0.91(3) eV, EA(SII) = 0.60(3) eV, Z(SI) = 6 x 10(14) s(-1), Z(SII) = 1 x 10(13) s(-1) for trans-[Ru(NH3)4(OH)NO]Cl2. The observations are compared with the ground state potential surface calculated by density functional theory, where the metastable states correspond to a side-on bonded (SII) and isonitrosyl (SI) configuration of the NO ligand. The calculations provide the energetic minima of the ground state and the metastable states SI and SII as well as the saddle points along the reaction coordinate Q, which corresponds roughly to a rotation of the NO ligand by about 90 degrees (SII) and 180 degrees (SI), and therefore allows for the comparison between observed and calculated activation energies.

Publication Types