Display options
Share it on

J Biol Phys. 2008 Aug;34(3):251-66. doi: 10.1007/s10867-008-9095-y. Epub 2008 Aug 01.

Dynamics of the subthalamo-pallidal complex in Parkinson's disease during deep brain stimulation.

Journal of biological physics

J Modolo, J Henry, A Beuter

Affiliations

  1. Laboratoire Intégration du Matériau au Système, CNRS UMR 5218, Université Bordeaux 1, Talence, France. [email protected]

PMID: 19669474 PMCID: PMC2585637 DOI: 10.1007/s10867-008-9095-y

Abstract

The dynamics of the subthalamo-pallidal complex in Parkinson's disease during deep brain stimulation (DBS) were studied using two models, a simple firing-rate model and a population-based model. We extended the simple firing-rate model of the complex formed by the subthalamic nucleus (STN) and the external segment of the Globus Pallidus (GPe) to explore its dynamical regime during DBS. More specifically, the modulation of neuronal activity (i.e., pattern and amplitude) during DBS was studied. A similar approach was used with the population-based model. Simulation results revealed a gradual decrease in bursting activity in STN cells when the DBS frequency increased. In addition, the contribution of the stimulation current type (mono- or biphasic) to the results was also examined. A comparison of the two models indicated that the population-based model was more biologically realistic and more appropriate for exploring DBS mechanisms. Understanding the underlying mechanisms of DBS is a prerequisite for developing new stimulation protocols.

References

  1. Science. 1977 Jul 15;197(4300):287-9 - PubMed
  2. Biol Cybern. 2005 Dec;93(6):463-70 - PubMed
  3. Acta Neurochir Suppl. 2007;97(Pt 2):215-22 - PubMed
  4. Mov Disord. 2005 May;20(5):574-84 - PubMed
  5. J Comput Neurosci. 2000 Jan-Feb;8(1):19-50 - PubMed
  6. Mov Disord. 2004 Nov;19(11):1328-33 - PubMed
  7. J Neurosci. 2003 Sep 24;23(25):8743-51 - PubMed
  8. Brain. 2001 Oct;124(Pt 10):2105-18 - PubMed
  9. J Physiol Paris. 2007 Jan-May;101(1-3):56-63 - PubMed
  10. Adv Neurol. 1987;45:19-34 - PubMed
  11. J Neurosci. 1999 Sep 1;19(17):7617-28 - PubMed
  12. J Neurosci. 2002 Apr 1;22(7):2963-76 - PubMed
  13. IEEE Trans Neural Netw. 2003;14(6):1569-72 - PubMed
  14. Neurosci Lett. 2005 Jul 1-8;382(1-2):5-9 - PubMed
  15. J Neurosci Methods. 2005 Feb 15;141(2):171-98 - PubMed
  16. Chaos. 1995 Mar;5(1):35-42 - PubMed
  17. Trends Neurosci. 1989 Oct;12(10):366-75 - PubMed
  18. Stereotact Funct Neurosurg. 2003;80(1-4):56-60 - PubMed
  19. Neurosurgery. 2005 Jun;56(6):1313-21; discussion 1321-4 - PubMed
  20. Expert Rev Med Devices. 2007 Sep;4(5):591-603 - PubMed
  21. Eur J Neurol. 2008 Jan;15(1):22-8 - PubMed
  22. J Integr Neurosci. 2007 Dec;6(4):625-55 - PubMed
  23. Kybernetik. 1973 Sep;13(2):55-80 - PubMed
  24. Biol Cybern. 2003 Aug;89(2):81-8 - PubMed
  25. Clin Neurophysiol. 2004 Jun;115(6):1239-48 - PubMed
  26. Chaos. 2001 Dec;11(4):766-773 - PubMed
  27. Nature. 1999 Aug 12;400(6745):677-82 - PubMed
  28. J Physiol Paris. 1994;88(6):359-61 - PubMed
  29. Curr Opin Neurobiol. 2003 Dec;13(6):696-706 - PubMed
  30. J Neurophysiol. 2001 Apr;85(4):1351-6 - PubMed
  31. Med Eng Phys. 2004 Nov;26(9):723-32 - PubMed
  32. J Comput Neurosci. 2004 May-Jun;16(3):211-35 - PubMed
  33. Trends Neurosci. 2005 Apr;28(4):209-16 - PubMed
  34. Brain Res Bull. 2006 Mar 31;69(2):123-30 - PubMed
  35. J Neurosci. 2000 Oct 15;20(20):7766-75 - PubMed
  36. Prog Brain Res. 1990;85:119-46 - PubMed

Publication Types