Display options
Share it on

Int J Imaging Syst Technol. 2008 Jun 01;18(1):42-68. doi: 10.1002/ima.v18:1.

A METHODOLOGY FOR ANALYZING CURVATURE IN THE DEVELOPING BRAIN FROM PRETERM TO ADULT.

International journal of imaging systems and technology

R Pienaar, B Fischl, V Caviness, N Makris, P E Grant

PMID: 19936261 PMCID: PMC2779548 DOI: 10.1002/ima.v18:1

Abstract

The character and timing of gyral development is one manifestation of the complex orchestration of human brain development. The ability to quantify these changes would not only allow for deeper understanding of cortical development, but also conceivably allow for improved detection of pathologies. This paper describes a FreeSurfer based image-processing analysis "pipeline" or methodology that inputs an MRI volume, corrects possible contrast defects, creates surface reconstructions, and outputs various curvature-based function analyses. A technique of performing neonate reconstructions using FreeSurfer, which has not been possible previously due to inverted image contrast in pre-myelinated brains, is described. Once surfaces are reconstructed, the analysis component of the pipeline incorporates several surface-based curvature functions found in literature (principle curvatures, Gaussian, mean curvature, "curvedness", and Willmore Bending Energy). We consider the problem of analyzing curvatures from different sized brains by introducing a Gaussian-curvature based variable-radius filter. Segmented volume data is also analyzed for folding measures: a gyral folding index (gyrification-white index GWI), and a gray-white matter junction folding index (WMF). A very simple curvature-based classifier is proposed that has the potential to discriminate between certain classes of subjects. We also present preliminary results of this curvature analysis pipeline on nine neonate subjects (30.4 weeks through 40.3 weeks Corrected Gestational Age), 3 children (2, 3, and 7 years) and 3 adults (33, 37, and 39 years). Initial results demonstrate that curvature measures and functions across our subjects peaked at term, with a gradual decline through early childhood and further decline continuing through to adults. We can also discriminate older neonates, children, and adults based on curvature analysis. Using a variable radius Gaussian-curvature filter, we also observed that the per-unit bending energy of neonate brain surfaces was also much higher than the children and adults.

References

  1. IEEE Trans Med Imaging. 2002 Aug;21(8):953-65 - PubMed
  2. Ann Neurol. 1989 Jan;25(1):61-7 - PubMed
  3. Science. 1988 Jul 8;241(4862):170-6 - PubMed
  4. J Cogn Neurosci. 1992 Fall;4(4):352-74 - PubMed
  5. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10706-11 - PubMed
  6. J Neurosci. 2006 May 17;26(20):5470-83 - PubMed
  7. IEEE Trans Med Imaging. 2007 Apr;26(4):582-97 - PubMed
  8. Neuropediatrics. 2001 Apr;32(2):69-74 - PubMed
  9. Neuroimage. 2005 Dec;28(4):869-80 - PubMed
  10. Neuroimage. 2004;23 Suppl 1:S129-38 - PubMed
  11. Neurology. 2005 Dec 27;65(12):1873-87 - PubMed
  12. IEEE Trans Med Imaging. 1989;8(1):1-7 - PubMed
  13. J Cogn Neurosci. 2003 May 15;15(4):584-99 - PubMed
  14. Science. 1975 Jul 4;189(4196):18-21 - PubMed
  15. Pediatr Neurol. 1991 Sep-Oct;7(5):347-51 - PubMed
  16. Neuroimage. 2006 Sep;32(3):1041-9 - PubMed
  17. Neuroimage. 2006 Jan 15;29(2):619-27 - PubMed
  18. IEEE Trans Med Imaging. 1987;6(2):134-40 - PubMed
  19. IEEE Trans Image Process. 2002;11(7):738-45 - PubMed
  20. Med Image Anal. 2003 Dec;7(4):403-16 - PubMed
  21. Neurol Med Chir (Tokyo). 2005 Jan;45(1):1-17 - PubMed
  22. Trends Neurosci. 1995 Sep;18(9):383-8 - PubMed
  23. Schizophr Res. 2007 Aug;94(1-3):317-27 - PubMed
  24. Anat Embryol (Berl). 2005 Dec;210(5-6):411-7 - PubMed
  25. Bipolar Disord. 2006 Feb;8(1):65-74 - PubMed
  26. Neuroimage. 2003 Nov;20(3):1765-74 - PubMed
  27. Bibl Anat. 1986;(28):53-78 - PubMed
  28. IEEE Trans Pattern Anal Mach Intell. 2004 Aug;26(8):1088-94 - PubMed
  29. Hum Brain Mapp. 2006 Dec;27(12):994-1003 - PubMed
  30. Curr Opin Neurol. 2004 Aug;17(4):489-96 - PubMed
  31. J Hirnforsch. 1991;32(1):103-11 - PubMed
  32. J Cogn Neurosci. 1996 Nov;8(6):566-87 - PubMed
  33. Anat Embryol (Berl). 1988;179(2):173-9 - PubMed
  34. Neuroimage. 1999 Feb;9(2):179-94 - PubMed
  35. PLoS Comput Biol. 2006 Mar;2(3):e22 - PubMed
  36. IEEE Trans Med Imaging. 2004 Aug;23(8):968-82 - PubMed
  37. Cereb Cortex. 1996 Sep-Oct;6(5):726-36 - PubMed
  38. Inf Process Med Imaging. 2003 Jul;18:160-71 - PubMed
  39. Neurology. 1997 Mar;48(3):589-601 - PubMed
  40. J Neurosci. 1997 Sep 15;17(18):7079-102 - PubMed
  41. J Theor Biol. 1994 Feb 7;166(3):261-73 - PubMed
  42. Brain Dev. 1989;11(1):1-13 - PubMed
  43. Pediatrics. 1998 Jun;101(6):957-62 - PubMed
  44. IEEE Trans Med Imaging. 2003 Jun;22(6):754-65 - PubMed
  45. Brain Dev. 1995 Nov-Dec;17(6):399-408 - PubMed
  46. Ann Neurol. 2004 Apr;55(4):530-40 - PubMed
  47. Cereb Cortex. 1995 Jan-Feb;5(1):56-63 - PubMed
  48. IEEE Trans Med Imaging. 2007 Apr;26(4):598-618 - PubMed
  49. Neuroimage. 2006 Oct 15;33(1):139-53 - PubMed
  50. Anat Embryol (Berl). 1997 Nov;196(5):393-402 - PubMed
  51. Neuroimage. 2005 May 1;25(4):1146-60 - PubMed
  52. Hum Brain Mapp. 2006 Feb;27(2):99-113 - PubMed
  53. Radiology. 1996 Aug;200(2):389-96 - PubMed
  54. Cereb Cortex. 1994 Jul-Aug;4(4):344-60 - PubMed
  55. Neuroimage. 1999 Feb;9(2):195-207 - PubMed

Publication Types

Grant support