Display options
Share it on

Extremophiles. 2010 Jan;14(1):119-42. doi: 10.1007/s00792-009-0280-0. Epub 2009 Oct 04.

"Hot standards" for the thermoacidophilic archaeon Sulfolobus solfataricus.

Extremophiles : life under extreme conditions

Melanie Zaparty, Dominik Esser, Susanne Gertig, Patrick Haferkamp, Theresa Kouril, Andrea Manica, Trong K Pham, Julia Reimann, Kerstin Schreiber, Pawel Sierocinski, Daniela Teichmann, Marleen van Wolferen, Mathias von Jan, Patricia Wieloch, Sonja V Albers, Arnold J M Driessen, Hans-Peter Klenk, Christa Schleper, Dietmar Schomburg, John van der Oost, Phillip C Wright, Bettina Siebers

Affiliations

  1. Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Lotharstrasse, 47057 Duisburg, Germany. [email protected]

PMID: 19802714 PMCID: PMC2797409 DOI: 10.1007/s00792-009-0280-0

Abstract

Within the archaea, the thermoacidophilic crenarchaeote Sulfolobus solfataricus has become an important model organism for physiology and biochemistry, comparative and functional genomics, as well as, more recently also for systems biology approaches. Within the Sulfolobus Systems Biology ("SulfoSYS")-project the effect of changing growth temperatures on a metabolic network is investigated at the systems level by integrating genomic, transcriptomic, proteomic, metabolomic and enzymatic information for production of a silicon cell-model. The network under investigation is the central carbohydrate metabolism. The generation of high-quality quantitative data, which is critical for the investigation of biological systems and the successful integration of the different datasets, derived for example from high-throughput approaches (e.g., transcriptome or proteome analyses), requires the application and compliance of uniform standard protocols, e.g., for growth and handling of the organism as well as the "-omics" approaches. Here, we report on the establishment and implementation of standard operating procedures for the different wet-lab and in silico techniques that are applied within the SulfoSYS-project and that we believe can be useful for future projects on Sulfolobus or (hyper)thermophiles in general. Beside established techniques, it includes new methodologies like strain surveillance, the improved identification of membrane proteins and the application of crenarchaeal metabolomics.

References

  1. Biochem J. 2003 Oct 15;375(Pt 2):231-46 - PubMed
  2. J Proteome Res. 2010 Feb 5;9(2):1165-72 - PubMed
  3. Mol Microbiol. 2003 Apr;48(1):143-56 - PubMed
  4. Mol Microbiol. 2003 Jun;48(5):1241-52 - PubMed
  5. Front Biosci. 2000 Sep 01;5:D813-20 - PubMed
  6. Extremophiles. 2008 Jan;12(1):75-88 - PubMed
  7. Biochem J. 1999 Nov 1;343 Pt 3:563-70 - PubMed
  8. J Bacteriol. 2000 May;182(9):2574-81 - PubMed
  9. Proteomics. 2006 Mar;6(5):1518-29 - PubMed
  10. Biochem Soc Trans. 2009 Feb;37(Pt 1):58-64 - PubMed
  11. Biochem J. 2005 Sep 1;390(Pt 2):529-40 - PubMed
  12. J Bacteriol. 2008 Apr;190(8):2957-65 - PubMed
  13. J Mol Biol. 1986 May 5;189(1):113-30 - PubMed
  14. Mol Microbiol. 2001 Mar;39(6):1494-503 - PubMed
  15. Nat Methods. 2007 Mar;4(3):207-14 - PubMed
  16. Genomics. 2008 Jan;91(1):102-7 - PubMed
  17. Appl Environ Microbiol. 2006 Jan;72(1):102-11 - PubMed
  18. Biochem Soc Trans. 2009 Feb;37(Pt 1):97-101 - PubMed
  19. Anal Biochem. 1984 Apr;138(1):141-3 - PubMed
  20. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  21. Mol Gen Genet. 1994 Apr;243(1):91-6 - PubMed
  22. Microbiol Mol Biol Rev. 2006 Dec;70(4):876-87 - PubMed
  23. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7835-40 - PubMed
  24. J Bacteriol. 2008 Mar;190(6):2231-8 - PubMed
  25. J Biochem. 2006 Mar;139(3):591-6 - PubMed
  26. Extremophiles. 2001 Oct;5(5):285-94 - PubMed
  27. J Bacteriol. 2003 Jan;185(2):482-8 - PubMed
  28. J Bacteriol. 1989 Sep;171(9):5162-4 - PubMed
  29. Nucleic Acids Res. 2008 Jan;36(Database issue):D528-33 - PubMed
  30. J Bioenerg Biomembr. 2004 Feb;36(1):5-15 - PubMed
  31. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W611-5 - PubMed
  32. Acta Crystallogr D Biol Crystallogr. 2008 May;64(Pt 5):543-50 - PubMed
  33. Genome Biol. 2006;7(10):R99 - PubMed
  34. J Mol Biol. 1983 Jun 5;166(4):557-80 - PubMed
  35. J Mol Biol. 2001 Feb 9;306(1):1-6 - PubMed
  36. Mol Cell Proteomics. 2006 Sep;5(9):1543-58 - PubMed
  37. Archaea. 2008 Dec;2(3):145-9 - PubMed
  38. J Proteome Res. 2008 Feb;7(2):731-40 - PubMed
  39. Biol Chem. 2004 Sep;385(9):853-61 - PubMed
  40. J Phys Chem B. 2008 Dec 25;112(51):16752-8 - PubMed
  41. Virology. 2007 Aug 15;365(1):48-59 - PubMed
  42. Nucleic Acids Res. 2008 Jan;36(Database issue):D88-92 - PubMed
  43. J Bacteriol. 1989 Dec;171(12):6710-9 - PubMed
  44. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  45. Curr Opin Microbiol. 2001 Apr;4(2):208-13 - PubMed
  46. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 - PubMed
  47. Curr Opin Microbiol. 2005 Dec;8(6):669-76 - PubMed
  48. J Bacteriol. 2005 Jan;187(1):336-48 - PubMed
  49. Genome Biol. 2002 Oct 24;3(11):research0062 - PubMed
  50. Mol Cell Proteomics. 2006 Mar;5(3):444-53 - PubMed
  51. Extremophiles. 2008 May;12(3):383-9 - PubMed
  52. J Biol Chem. 2003 Sep 5;278(36):34066-72 - PubMed
  53. Bioinformatics. 2004 Sep 1;20(13):2143-4 - PubMed
  54. Nat Genet. 2002 Dec;32 Suppl:496-501 - PubMed
  55. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7645-9 - PubMed
  56. FEBS Lett. 2005 Dec 19;579(30):6865-9 - PubMed
  57. J Bacteriol. 1999 Jul;181(14):4285-91 - PubMed
  58. Biochemistry. 2000 Feb 8;39(5):955-64 - PubMed
  59. Arch Mikrobiol. 1972;84(1):54-68 - PubMed
  60. Extremophiles. 2009 Mar;13(2):213-31 - PubMed
  61. Mol Microbiol. 2007 May;64(3):795-806 - PubMed
  62. Biophys J. 2009 Sep 2;97(5):1244-53 - PubMed
  63. Biochem J. 2005 Apr 1;387(Pt 1):271-80 - PubMed

MeSH terms

Publication Types

Grant support