Display options
Share it on

Commun Integr Biol. 2009 Sep;2(5):414-7. doi: 10.4161/cib.2.5.8846.

Generation of genetic diversity in microsporidia via sexual reproduction and horizontal gene transfer.

Communicative & integrative biology

Soo Chan Lee, Louis M Weiss, Joseph Heitman

Affiliations

  1. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.

PMID: 19907704 PMCID: PMC2775237 DOI: 10.4161/cib.2.5.8846

Abstract

Microsporidia are obligate intracellular pathogens mainly infecting both vertebrate and invertebrate hosts. The group comprises approximately 150 genera with 1,200 species. Due to sequence divergence phylogenic reconstructions that are solely based on DNA sequence have been unprecise for these pathogens. Our previous study identified that three microsporidian genomes contained a putative sex-related locus similar to that of zygomycetes. In a comparison of genome architecture of the microsporidia to other fungi, Rhizopus oryzae, a zygomycete fungus, shared more common gene clusters with Encephalitozoon cuniculi, a microsporidian. This provides evidence supporting the hypothesis that microsporidia and zygomycete fungi may share a more recent common ancestor than other fungal lineages. Genetic recombination is an important outcome of sexual development. We describe genetic markers which will enable tests of whether sex occurs within E. cuniculi populations by analyzing tandem repeat DNA regions in three different isolates. Taken together, the phylogenetic relationship of microsporidia to fungi and the presence of a sex-related locus in their genomes suggest the microsporidia may have an extant sexual cycle. In addition, we describe recently reported evidence of horizontal gene transfer from Chlamydia to the E. cuniculi genome and show that these two obligate intracellular pathogens can infect the same host cells.

Keywords: Chlamydia; E. cuniculi; fungi; sexual reproduction; zygomycete

References

  1. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):580-5 - PubMed
  2. Trends Genet. 1999 May;15(5):173-5 - PubMed
  3. Nature. 2008 Jan 10;451(7175):193-6 - PubMed
  4. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 - PubMed
  5. Science. 2008 Mar 14;319(5869):1530-3 - PubMed
  6. Nucleic Acids Res. 2003 Dec 1;31(23):6798-805 - PubMed
  7. J Mol Biol. 2004 Aug 13;341(3):713-21 - PubMed
  8. Nature. 2002 Aug 22;418(6900):865-9 - PubMed
  9. Annu Rev Cell Dev Biol. 2002;18:221-45 - PubMed
  10. Gene. 2006 Jun 21;375:103-9 - PubMed
  11. J Clin Microbiol. 2001 Jun;39(6):2248-53 - PubMed
  12. Curr Opin Infect Dis. 2006 Oct;19(5):485-92 - PubMed
  13. Nature. 2008 May 22;453(7194):553-6 - PubMed
  14. Annu Rev Microbiol. 2002;56:93-116 - PubMed
  15. Fungal Genet Biol. 2003 Apr;38(3):298-309 - PubMed
  16. Mol Biol Evol. 2000 Jan;17(1):23-31 - PubMed
  17. Eukaryot Cell. 2003 Oct;2(5):1069-75 - PubMed
  18. Nature. 2001 Nov 22;414(6862):450-3 - PubMed
  19. Nature. 2008 Apr 3;452(7187):624-8 - PubMed
  20. BMC Genomics. 2007 Aug 21;8:285 - PubMed
  21. Curr Biol. 2004 May 25;14(10):891-6 - PubMed
  22. Curr Biol. 2008 Nov 11;18(21):1675-9 - PubMed
  23. J Eukaryot Microbiol. 2008 Mar-Apr;55(2):131-3 - PubMed
  24. J Mol Evol. 2004 Dec;59(6):780-91 - PubMed
  25. Nature. 2006 Oct 19;443(7113):818-22 - PubMed
  26. Nature. 1987 Mar 26-Apr 1;326(6111):411-4 - PubMed

Publication Types

Grant support