Display options
Share it on

Parasit Vectors. 2009 Nov 12;2(1):54. doi: 10.1186/1756-3305-2-54.

A luciferase based viability assay for ATP detection in 384-well format for high throughput whole cell screening of Trypanosoma brucei brucei bloodstream form strain 427.

Parasites & vectors

Melissa L Sykes, Vicky M Avery

Affiliations

  1. Eskitis Institute for Cell and Molecular Therapies, Griffith University, Eskitis Building N27, Brisbane Innovation Park, Don Young Road, Nathan, Queensland, Australia. [email protected].

PMID: 19909542 PMCID: PMC2781010 DOI: 10.1186/1756-3305-2-54

Abstract

BACKGROUND: Human African Trypanosomiasis (HAT) is caused by two trypanosome species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Current drugs available for the treatment of HAT have significant issues related to toxicity, administration regimes with limited effectiveness across species and disease stages, thus there is a considerable need to find alternative drugs. A well recognised approach to identify new drug candidates is high throughput screening (HTS) of large compound library collections.

RESULTS: We describe here the development of a luciferase based viability assay in 384-well plate format suitable for HTS of T.b.brucei. The parameters that were explored to determine the final HTS assay conditions are described in detail and include DMSO tolerability, Z', diluents and cell inoculum density. Reference compound activities were determined for diminazene, staurosporine and pentamidine and compared to previously published IC50 data obtained. The assay has a comparable sensitivity to reference drugs and is more cost effective than the 96-well format currently reported for T.b.brucei.

CONCLUSION: Due to the reproducibility and sensitivity of this assay it is recommended for potential HTS application. As it is commercially available this assay can also be utilised in many laboratories for both large and small scale screening.

References

  1. J Biomol Screen. 1999;4(2):67-73 - PubMed
  2. Ann Trop Med Parasitol. 1989 Aug;83 Suppl 1:111-4 - PubMed
  3. Trop Med Int Health. 2002 Sep;7(9):775-9 - PubMed
  4. Toxicol Lett. 2003 Feb 3;137(3):159-68 - PubMed
  5. J Biomol Screen. 2006 Apr;11(3):247-52 - PubMed
  6. Bioorg Med Chem Lett. 2007 Mar 1;17(5):1280-3 - PubMed
  7. Eukaryot Cell. 2003 Oct;2(5):1003-8 - PubMed
  8. Acta Trop. 1997 Nov;68(2):139-47 - PubMed
  9. J Biol Chem. 2004 Nov 12;279(46):48426-33 - PubMed
  10. J Biomol Screen. 2007 Mar;12(2):229-34 - PubMed
  11. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1780-4 - PubMed
  12. J Cell Sci. 1997 Nov;110 ( Pt 21):2661-71 - PubMed
  13. Am J Trop Med Hyg. 2009 Oct;81(4):665-74 - PubMed
  14. Acta Trop. 1993 Sep;54(3-4):169-83 - PubMed
  15. J Parasitol. 1989 Dec;75(6):985-9 - PubMed
  16. FEMS Microbiol Lett. 2006 Mar;256(2):209-16 - PubMed
  17. Kinetoplastid Biol Dis. 2006 Aug 16;5:3 - PubMed
  18. Cell Death Differ. 2002 Jan;9(1):65-81 - PubMed
  19. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3450-4 - PubMed
  20. Biochem Mol Biol Int. 1994 Feb;32(2):251-8 - PubMed
  21. Trop Med Int Health. 2001 May;6(5):412-20 - PubMed
  22. Biotechnol Bioeng. 1992 Apr 5;39(8):859-64 - PubMed
  23. Nat Rev Drug Discov. 2005 Sep;4(9):727-40 - PubMed
  24. Chem Biol Drug Des. 2006 May;67(5):355-63 - PubMed
  25. Mol Pharmacol. 2006 Nov;70(5):1585-92 - PubMed
  26. Antimicrob Agents Chemother. 2005 Dec;49(12):5169-71 - PubMed
  27. Adv Parasitol. 1994;33:1-47 - PubMed
  28. Wkly Epidemiol Rec. 2006 Feb 24;81(8):71-80 - PubMed
  29. Trends Biotechnol. 2006 Mar;24(3):105-8 - PubMed
  30. Anal Biochem. 2002 Aug 1;307(1):70-5 - PubMed
  31. PLoS Med. 2004 Oct;1(1):e6 - PubMed
  32. J Bacteriol. 2008 Nov;190(22):7453-63 - PubMed
  33. Antimicrob Agents Chemother. 2009 Jul;53(7):2824-33 - PubMed
  34. Acta Trop. 1993 Sep;54(3-4):279-89 - PubMed
  35. Mol Cell Biol. 1998 Mar;18(3):1137-46 - PubMed

Publication Types