Display options
Share it on

Front Comput Neurosci. 2009 Nov 26;3:26. doi: 10.3389/neuro.10.026.2009. eCollection 2009.

Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models.

Frontiers in computational neuroscience

Mark D Humphries, Nathan Lepora, Ric Wood, Kevin Gurney

Affiliations

  1. Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield Sheffield, UK.

PMID: 20011223 PMCID: PMC2791037 DOI: 10.3389/neuro.10.026.2009

Abstract

Loss of dopamine from the striatum can cause both profound motor deficits, as in Parkinson's disease, and disrupt learning. Yet the effect of dopamine on striatal neurons remains a complex and controversial topic, and is in need of a comprehensive framework. We extend a reduced model of the striatal medium spiny neuron (MSN) to account for dopaminergic modulation of its intrinsic ion channels and synaptic inputs. We tune our D1 and D2 receptor MSN models using data from a recent large-scale compartmental model. The new models capture the input-output relationships for both current injection and spiking input with remarkable accuracy, despite the order of magnitude decrease in system size. They also capture the paired pulse facilitation shown by MSNs. Our dopamine models predict that synaptic effects dominate intrinsic effects for all levels of D1 and D2 receptor activation. We analytically derive a full set of equilibrium points and their stability for the original and dopamine modulated forms of the MSN model. We find that the stability types are not changed by dopamine activation, and our models predict that the MSN is never bistable. Nonetheless, the MSN models can produce a spontaneously bimodal membrane potential similar to that recently observed in vitro following application of NMDA agonists. We demonstrate that this bimodality is created by modelling the agonist effects as slow, irregular and massive jumps in NMDA conductance and, rather than a form of bistability, is due to the voltage-dependent blockade of NMDA receptors. Our models also predict a more pronounced membrane potential bimodality following D1 receptor activation. This work thus establishes reduced yet accurate dopamine-modulated models of MSNs, suitable for use in large-scale models of the striatum. More importantly, these provide a tractable framework for further study of dopamine's effects on computation by individual neurons.

Keywords: bimodality; bistability; phase plane analysis; signal-to-noise ratio; striatum

References

  1. J Neurosci. 1990 Jun;10(6):1830-7 - PubMed
  2. Behav Brain Res. 1985 Oct-Nov;18(1):11-29 - PubMed
  3. Trends Neurosci. 2007 May;30(5):228-35 - PubMed
  4. J Neurophysiol. 2008 Mar;99(3):1435-50 - PubMed
  5. Synapse. 1998 Jul;29(3):213-24 - PubMed
  6. Learn Mem. 2000 Sep-Oct;7(5):357-62 - PubMed
  7. J Neurosci. 1997 May 1;17(9):3334-42 - PubMed
  8. Cereb Cortex. 2001 Apr;11(4):360-73 - PubMed
  9. Neural Comput. 2007 Dec;19(12):3216-25 - PubMed
  10. IEEE Trans Neural Netw. 2004 Sep;15(5):1063-70 - PubMed
  11. J Physiol. 2002 Sep 1;543(Pt 2):577-89 - PubMed
  12. IEEE Trans Neural Netw. 2003;14(6):1569-72 - PubMed
  13. Trends Neurosci. 1989 Oct;12(10):366-75 - PubMed
  14. Neuroscience. 1989;30(3):767-77 - PubMed
  15. J Neurosci. 1992 Feb;12(2):635-43 - PubMed
  16. Neuroscience. 1992;48(3):579-93 - PubMed
  17. J Physiol. 2000 Sep 1;527 Pt 2:345-54 - PubMed
  18. Trends Neurosci. 2007 May;30(5):203-10 - PubMed
  19. Neural Netw. 2009 Oct;22(8):1174-88 - PubMed
  20. J Neurophysiol. 1994 Mar;71(3):1174-89 - PubMed
  21. J Neurosci. 2003 Jun 15;23(12):5079-87 - PubMed
  22. Science. 1990 Aug 24;249(4971):892-5 - PubMed
  23. Ann N Y Acad Sci. 1999 Jun 29;877:49-63 - PubMed
  24. J Neurosci. 1990 Sep;10(9):3178-82 - PubMed
  25. J Neurosci Methods. 2005 Oct 15;148(1):78-87 - PubMed
  26. J Neurophysiol. 2002 Feb;87(2):1007-17 - PubMed
  27. Trends Neurosci. 2004 Sep;27(9):520-7 - PubMed
  28. Cereb Cortex. 2004 Aug;14(8):933-44 - PubMed
  29. Neuroscience. 1989;29(3):503-37 - PubMed
  30. Exp Neurol. 1998 Aug;152(2):259-77 - PubMed
  31. Nature. 1990 Aug 9;346(6284):565-7 - PubMed
  32. Biol Cybern. 2001 Jun;84(6):411-23 - PubMed
  33. Prog Neurobiol. 1996 Oct;50(2-3):275-331 - PubMed
  34. Nat Rev Neurosci. 2006 Dec;7(12):967-75 - PubMed
  35. J Neurosci. 1986 Aug;6(8):2352-65 - PubMed
  36. J Neurosci. 2005 Oct 5;25(40):9080-95 - PubMed
  37. J Chem Neuroanat. 2001 Jul;22(1-2):127-37 - PubMed
  38. J Neurosci. 2000 Dec 15;20(24):8987-95 - PubMed
  39. J Neurosci. 2002 Jun 15;22(12):RC230 - PubMed
  40. J Neurosci. 2008 Oct 22;28(43):10814-24 - PubMed
  41. Science. 2008 Aug 8;321(5890):848-51 - PubMed
  42. J Neurophysiol. 2003 Aug;90(2):1095-114 - PubMed
  43. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Oct;188(9):695-703 - PubMed
  44. J Physiol. 2003 Nov 15;553(Pt 1):169-82 - PubMed
  45. J Neurosci. 1996 Apr 1;16(7):2397-410 - PubMed
  46. J Neurosci. 1995 Jun;15(6):4449-63 - PubMed
  47. Cell Tissue Res. 2004 Oct;318(1):93-106 - PubMed
  48. Brain Res Mol Brain Res. 1995 Oct;33(1):97-103 - PubMed
  49. Front Neuroinform. 2008 Apr 02;2:1 - PubMed
  50. J Neurophysiol. 2007 Dec;98(6):3731-48 - PubMed

Publication Types