Display options
Share it on

Plant Signal Behav. 2010 Mar;5(3):287-9. doi: 10.4161/psb.5.3.10713. Epub 2010 Mar 19.

New insights into the early biochemical activation of jasmonic acid biosynthesis in leaves.

Plant signaling & behavior

Gustavo Bonaventure, Ian T Baldwin

Affiliations

  1. Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany. [email protected]

PMID: 20037473 PMCID: PMC2881280 DOI: 10.4161/psb.5.3.10713

Abstract

In plants, herbivore attack elicits the rapid accumulation of jasmonic acid (JA) which results from the activation of constitutively expressed biosynthetic enzymes. The molecular mechanisms controlling the activation of JA biosynthesis remain largely unknown however new research has elucidated some of the early regulatory components involved in this process. Nicotiana attenuata plants, a wild tobacco species, responds to fatty acid amino acid conjuguates (FAC) elicitors in the oral secretion of its natural herbivore, Manduca sexta, by triggering specific defense and tolerance responses against it; all of the defense responses known to date require the amplification of the wound-induced JA increase. We recently demonstrated that this FAC-elicited JA burst requires an increased flux of free linolenic acid (18:3) likely originating from the activation of a plastidial glycerolipase (GLA1) which is activated by an abundant FAC found in insect oral secretions, N-linolenoyl-glutamate (18:3-Glu). The lack of accumulation of free 18:3 after elicitation suggests a tight physical association between GLA1 and LOX3 in N. attenuata leaves. In addition, the salicylate-induced protein kinase (SIPK) and the nonexpressor of PR-1 (NPR1) participate in this activation mechanism that controls the supply of 18:3. In contrast, the wound-induced protein kinase (WIPK) does not but instead regulates the conversion of 13(S)-hydroperoxy-18:3 into 12-oxo-phytodienoic acid (OPDA). These results open new perspectives on the complex network of signals and regulatory components inducing the JA biosynthetic pathway.

References

  1. Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14337-42 - PubMed
  2. Mol Cell Proteomics. 2006 Jan;5(1):114-33 - PubMed
  3. J Biol Chem. 2005 Nov 25;280(47):39545-52 - PubMed
  4. Plant Physiol. 2004 Apr;134(4):1752-62 - PubMed
  5. Plant Cell. 2001 Oct;13(10):2191-209 - PubMed
  6. Plant Cell. 1994 Nov;6(11):1583-1592 - PubMed
  7. Annu Rev Plant Biol. 2009;60:183-205 - PubMed
  8. Plant Cell. 2003 Mar;15(3):760-70 - PubMed
  9. Biochim Biophys Acta. 1998 Jul 31;1393(1):193-202 - PubMed
  10. Plant Cell. 2007 Mar;19(3):805-18 - PubMed
  11. Plant Cell. 2007 Mar;19(3):1096-122 - PubMed
  12. Planta. 2007 Aug;226(3):629-37 - PubMed
  13. Plant Physiol. 2010 Jan;152(1):96-106 - PubMed
  14. Science. 2001 Nov 30;294(5548):1871-5 - PubMed
  15. Plant Cell. 1999 Feb;11(2):289-98 - PubMed
  16. Plant Cell. 2006 Nov;18(11):3201-17 - PubMed
  17. Plant Physiol. 2001 Feb;125(2):711-7 - PubMed
  18. Plant Physiol. 1996 Jul;111(3):797-803 - PubMed
  19. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6523-8 - PubMed
  20. Plant J. 2006 Jul;47(2):249-57 - PubMed
  21. J Biol Chem. 2001 Apr 20;276(16):12832-8 - PubMed
  22. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10736-41 - PubMed
  23. Plant J. 2007 Mar;49(5):889-98 - PubMed
  24. Plant Cell. 2007 Jul;19(7):2213-24 - PubMed
  25. Acta Crystallogr D Biol Crystallogr. 2004 Jun;60(Pt 6):1125-8 - PubMed
  26. Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12205-10 - PubMed

Publication Types