Display options
Share it on

Int J Quantum Chem. 2009 Mar 15;109(4):876-889. doi: 10.1002/qua.21875.

Inactivation of [Fe-Fe]-Hydrogenase by O(2). Thermodynamics and Frontier Molecular Orbitals Analyses.

International journal of quantum chemistry

Daniela Dogaru, Stefan Motiu, Valentin Gogonea

Affiliations

  1. Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115.

PMID: 20160838 PMCID: PMC2613324 DOI: 10.1002/qua.21875

Abstract

The oxidation of H-cluster in gas phase, and in aqueous enzyme phase, has been investigated by means of quantum mechanics (QM) and combined quantum mechanics-molecular mechanics (QM/MM). Several potential reaction pathways (in the above mentioned chemical environments) have been studied, wherein only the aqueous enzyme phase has been found to lead to an inhibited hydroxylated cluster. Specifically, the inhibitory process occurs at the distal iron (Fe(d)) of the catalytic H-cluster (which is also the atom involved in H(2) synthesis). The processes involved in the H-cluster oxidative pathways are O(2) binding, e(-) transfer, protonation, and H(2)O removal.We found that oxygen binding is non-spontaneous in gas phase, and spontaneous for aqueous enzyme phase where both Fe atoms have oxidation state II; however, it is spontaneous for the partially oxidized and reduced clusters in both phases. Hence, in the protein environment the hydroxylated H-cluster is obtained by means of completely exergonic reaction pathway starting with proton transfer.A unifying endeavor has been carried out for the purpose of understanding the thermodynamic results vis-à-vis several other performed electronic structural methods, such as frontier molecular orbitals (FMO), natural bond orbital partial charges (NBO), and H-cluster geometrical analysis. An interesting result of the FMO examination (for gas phase) is that an e(-) is transferred to LUMO(alpha) rather than to SOMO(beta), which is unexpected because SOMO(beta) usually resides in a lower energy rather than LUMO(alpha) for open-shell clusters.

References

  1. J Biol Chem. 1987 Jan 5;262(1):38-41 - PubMed
  2. Inorg Chem. 2004 Jun 14;43(12):3733-41 - PubMed
  3. Biochemistry. 2004 Jun 1;43(21):6808-19 - PubMed
  4. J Biol Chem. 1984 Jun 10;259(11):7045-55 - PubMed
  5. Plant Physiol. 2000 Jan;122(1):127-36 - PubMed
  6. J Biol Chem. 1988 Dec 15;263(35):18732-8 - PubMed
  7. Inorg Chem. 2002 Mar 25;41(6):1421-9 - PubMed
  8. Inorg Chem. 2007 Sep 3;46(18):7256-8 - PubMed
  9. Nature. 1997 Jan 9;385(6612):126 - PubMed
  10. Chem Soc Rev. 2003 Sep;32(5):268-75 - PubMed
  11. Science. 1998 Dec 4;282(5395):1853-8 - PubMed
  12. J Biol Inorg Chem. 2006 Jan;11(1):102-18 - PubMed
  13. Eur J Biochem. 1992 Oct 1;209(1):63-72 - PubMed
  14. J Biol Chem. 1987 Nov 5;262(31):15054-61 - PubMed
  15. Science. 1998 Dec 4;282(5395):1842-3 - PubMed
  16. Structure. 1999 Jan 15;7(1):13-23 - PubMed
  17. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 - PubMed
  18. Trends Biochem Sci. 2002 Mar;27(3):148-53 - PubMed
  19. Chemistry. 2005 Jan 7;11(2):509-20 - PubMed
  20. J Biol Chem. 1989 Dec 15;264(35):20974-83 - PubMed
  21. Biochemistry. 2002 Feb 12;41(6):2036-43 - PubMed
  22. Inorg Chem. 2004 Jan 12;43(1):14-26 - PubMed
  23. FEMS Microbiol Rev. 2001 Aug;25(4):455-501 - PubMed
  24. Biochim Biophys Acta. 1990 Nov 5;1020(2):115-45 - PubMed
  25. Eur J Biochem. 1998 Dec 1;258(2):572-8 - PubMed
  26. J Am Chem Soc. 2001 Apr 25;123(16):3734-42 - PubMed
  27. Curr Opin Struct Biol. 1999 Dec;9(6):670-6 - PubMed
  28. J Am Chem Soc. 2001 Apr 25;123(16):3828-9 - PubMed
  29. J Am Chem Soc. 2002 May 8;124(18):5175-82 - PubMed
  30. Curr Opin Chem Biol. 2004 Apr;8(2):133-40 - PubMed
  31. Inorg Chem. 2007 Jan 8;46(1):108-16 - PubMed
  32. Inorg Chem. 2003 Jul 28;42(15):4773-81 - PubMed
  33. Biochim Biophys Acta. 1994 Dec 30;1188(3):167-204 - PubMed
  34. Inorg Chem. 2007 Jul 23;46(15):5911-21 - PubMed
  35. Angew Chem Int Ed Engl. 1999 Nov 2;38(21):3178-3180 - PubMed

Publication Types

Grant support