Display options
Share it on

Organogenesis. 2009 Jul;5(3):167-75. doi: 10.4161/org.5.3.9974.

Physical and biological aspects of renal vitrification.

Organogenesis

Gregory M Fahy, Brian Wowk, Roberto Pagotan, Alice Chang, John Phan, Bruce Thomson, Laura Phan

Affiliations

  1. 21 Century Medicine, Inc.; Fontana, CA USA.

PMID: 20046680 PMCID: PMC2781097 DOI: 10.4161/org.5.3.9974

Abstract

Cryopreservation would potentially very much facilitate the inventory control and distribution of laboratory-produced organs and tissues. Although simple freezing methods are effective for many simple tissues, bioartificial organs and complex tissue constructs may be unacceptably altered by ice formation and dissolution. Vitrification, in which the liquids in a living system are converted into the glassy state at low temperatures, provides a potential alternative to freezing that can in principle avoid ice formation altogether. The present report provides a brief overview of the problem of renal vitrification. We report here the detailed case history of a rabbit kidney that survived vitrification and subsequent transplantation, a case that demonstrates both the fundamental feasibility of complex system vitrification and the obstacles that must still be overcome, of which the chief one in the case of the kidney is adequate distribution of cryoprotectant to the renal medulla. Medullary equilibration can be monitored by monitoring urine concentrations of cryoprotectant, and urine flow rate correlates with vitrification solution viscosity and the speed of equilibration. By taking these factors into account and by using higher perfusion pressures as per the case of the kidney that survived vitrification, it is becoming possible to design protocols for equilibrating kidneys that protect against both devitrification and excessive cryoprotectant toxicity.

Keywords: biobanking; cryopreserved; cryoprotective agents; ice-free cryopreservation; long-term organ preservation; organ banking; organ preservation; vitreous; vitrification solutions

References

  1. Cryobiology. 1980 Aug;17(4):371-88 - PubMed
  2. J Surg Res. 1973 Apr;14(4):313-8 - PubMed
  3. Cryobiology. 1978 Dec;15(6):618-26 - PubMed
  4. Cryobiology. 1975 Apr;12(2):130-43 - PubMed
  5. Cryobiology. 1997 Sep;35(2):114-31 - PubMed
  6. Nat Biotechnol. 2000 Mar;18(3):296-9 - PubMed
  7. Cryobiology. 1977 Oct;14(5):559-67 - PubMed
  8. J Surg Res. 1970 Jun;10(6):291-7 - PubMed
  9. Hum Reprod. 2005 Dec;20(12):3554-9 - PubMed
  10. Biol Reprod. 2003 Mar;68(3):881-7 - PubMed
  11. Cryobiology. 1984 Aug;21(4):385-402 - PubMed
  12. Fertil Steril. 2003 Mar;79(3):594-602 - PubMed
  13. Biomed Instrum Technol. 1994 Mar-Apr;28(2):87-100 - PubMed
  14. J Heart Valve Dis. 2004 Mar;13(2):297-301 - PubMed
  15. Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2160-4 - PubMed
  16. Fertil Steril. 2005 Oct;84 Suppl 2:1065-71 - PubMed
  17. Nature. 2002 Jan 24;415(6870):385 - PubMed
  18. Cryobiology. 2004 Apr;48(2):157-78 - PubMed
  19. Microsurgery. 2003;23(4):369-73 - PubMed
  20. Adv Anat Embryol Cell Biol. 1979;56:1-123 - PubMed
  21. Exp Anim. 2002 Oct;51(5):509-12 - PubMed
  22. Cryobiology. 2010 Feb;60(1):11-22 - PubMed
  23. Cryobiology. 2004 Feb;48(1):22-35 - PubMed
  24. Transplantation. 2000 Jul 15;70(1):51-7 - PubMed
  25. Rejuvenation Res. 2006 Summer;9(2):279-91 - PubMed
  26. Proc R Soc Lond B Biol Sci. 1957 Dec 17;147(929):533-44 - PubMed
  27. J Thorac Cardiovasc Surg. 2008 Mar;135(3):666-72, 672.e1 - PubMed
  28. Surgery. 1967 Mar;61(3):417-21 - PubMed
  29. J Surg Res. 1982 Jan;32(1):75-84 - PubMed
  30. Cryobiology. 1986 Dec;23(6):500-11 - PubMed
  31. Science. 2002 Feb 8;295(5557):1015 - PubMed
  32. Nature. 1985 Feb 14-20;313(6003):573-5 - PubMed
  33. Fertil Steril. 2004 Nov;82(5):1390-4 - PubMed
  34. Cryobiology. 1984 Aug;21(4):407-26 - PubMed
  35. Cryobiology. 2000 May;40(3):228-36 - PubMed
  36. Theriogenology. 2000 Mar 15;53(5):1093-103 - PubMed

Publication Types