Display options
Share it on

Perspect Medicin Chem. 2010 Feb 18;4:1-10. doi: 10.4137/pmc.s3898.

Stereochemical basis for a unified structure activity theory of aromatic and heterocyclic rings in selected opioids and opioid peptides.

Perspectives in medicinal chemistry

Joel S Goldberg

Affiliations

  1. Durham Veterans Affairs Medical Center and Duke University School of Medicine.

PMID: 20212915 PMCID: PMC2832284 DOI: 10.4137/pmc.s3898

Abstract

This paper presents a novel unified theory of the structure activity relationship of opioids and opioid peptides. It is hypothesized that a virtual or known heterocyclic ring exists in all opioids which have activity in humans, and this ring occupies relative to the aromatic ring of the drug, approximately the same plane in space as the piperidine ring of morphine. Since the rings of morphine are rigid, and the aromatic and piperidine rings are critical structural components for morphine's analgesic properties, the rigid morphine molecule allows for approximations of the aromatic and heterocyclic relationships in subsequent drug models where bond rotations are common. This hypothesis and five propositions are supported by stereochemistry and experimental observations.Proposition #1 The structure of morphine provides a template. Proposition #2 Steric hindrance of some centric portion of the piperidine ring explains antagonist properties of naloxone, naltrexone and alvimopam. Proposition #3 Methadone has an active conformation which contains a virtual heterocyclic ring which explains its analgesic activity and racemic properties. Proposition #4 The piperidine ring of fentanyl can assume the morphine position under conditions of nitrogen inversion. Proposition #5 The first 3 amino acid sequences of beta endorphin (l-try-gly-gly) and the active opioid dipeptide, l-tyr-pro, (as a result of a peptide turn and zwitterion bonding) form a virtual piperazine-like ring which is similar in size, shape and location to the heterocyclic rings of morphine, meperidine, and methadone. Potential flaws in this theory are discussed.This theory could be important for future analgesic drug design.

Keywords: analgesic; heterocyclic; opioid; stereochemistry

References

  1. J Med Chem. 1976 Jul;19(7):863-9 - PubMed
  2. Brain Behav Immun. 2010 Jan;24(1):83-95 - PubMed
  3. J Phys Chem B. 2006 Feb 23;110(7):3385-94 - PubMed
  4. J Org Chem. 2004 May 14;69(10):3500-8 - PubMed
  5. J Med Chem. 1974 Oct;17(10):1047-51 - PubMed
  6. Eur J Pharmacol. 2007 Jun 1;563(1-3):92-101 - PubMed
  7. Acta Physiol Hung. 2008 Mar;95(1):3-44 - PubMed
  8. Curr Med Chem. 2009;16(19):2468-74 - PubMed
  9. Bioconjug Chem. 2008 Dec;19(12):2585-9 - PubMed
  10. Drugs Today (Barc). 2009 Jul;45(7):483-96 - PubMed
  11. Science. 1983 Apr 22;220(4595):417-8 - PubMed
  12. Exp Mol Pathol. 2009 Jun;86(3):141-50 - PubMed
  13. Curr Pharm Des. 2009;15(35):4049-68 - PubMed
  14. J Comput Aided Mol Des. 1987 Apr;1(1):53-72 - PubMed
  15. Mol Pharmacol. 1992 Jan;41(1):185-96 - PubMed
  16. Proc Natl Acad Sci U S A. 1978 Jan;75(1):7-11 - PubMed
  17. J Pharm Pharmacol. 1954 Dec;6(12):986-1001 - PubMed
  18. Eur J Pharmacol. 1984 Sep 3;104(1-2):101-4 - PubMed
  19. J Med Chem. 1974 Jan;17(1):124-9 - PubMed
  20. Spectrochim Acta A Mol Biomol Spectrosc. 2000 Nov 1;56A(12):2479-89 - PubMed
  21. J Pharm Sci. 1985 Nov;74(11):1147-51 - PubMed
  22. Rom J Physiol. 2004 Jan-Jun;41(1-2):119-26 - PubMed
  23. Biochem J. 1984 Mar 15;218(3):677-89 - PubMed
  24. AAPS J. 2005;7(2):E434-48 - PubMed
  25. Science. 1954 Jan 22;119(3082):112-4 - PubMed
  26. Nature. 1954 Jun 26;173(4417):1231-2 - PubMed
  27. Izv Akad Nauk Ser Biol. 2008 Jan-Feb;(1):61-7 - PubMed
  28. J Mol Graph Model. 2010 Feb 26;28(6):495-505 - PubMed
  29. Curr Pharm Des. 2010;16(9):1126-35 - PubMed
  30. J Pharm Pharmacol. 1975 Oct;27(10):728-32 - PubMed

Publication Types