Display options
Share it on

ACS Chem Neurosci. 2010 Jan 20;1(1):74-83. doi: 10.1021/cn900017w.

Using In Vivo Electrochemistry to Study the Physiological Effects of Cocaine and Other Stimulants on the Drosophila melanogaster Dopamine Transporter.

ACS chemical neuroscience

Monique A Makos, Kyung-An Han, Michael L Heien, Andrew G Ewing

Affiliations

  1. Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.

PMID: 20352129 PMCID: PMC2843917 DOI: 10.1021/cn900017w

Abstract

Dopamine neurotransmission is thought to play a critical role in addiction reinforcing mechanisms of drugs of abuse. Electrochemical techniques have been employed extensively for monitoring in vivo dopamine changes in the brains of model organisms including rats, mice, and primates. Here, we investigated the effects of several stimulants on dopamine clearance using recently developed microanalytical tools for in vivo electrochemical measurements of dopamine in the central nervous system of Drosophila melanogaster. A cylindrical carbon-fiber microelectrode was placed in the protocerebral anterior medial region of the Drosophila brain (an area dense with dopamine neurons) while a micropipette injector was positioned to exogenously apply dopamine. Background-subtracted fast-scan cyclic voltammetry was carried out to quantify changes in dopamine concentration in the adult fly brain. Clearance of exogenously applied dopamine was significantly decreased in the protocerebral anterior medial area of the wild-type fly following treatment with cocaine, amphetamine, methamphetamine, or methylphenidate. In contrast, dopamine uptake remained unchanged when identical treatments were employed in fumin mutant flies that lack functional dopamine transporters. Our in vivo results support in vitro binding affinity studies that predict these four stimulants effectively block normal Drosophila dopamine transporter function. Furthermore, we found 10 muM to be a sufficient physiological cocaine concentration to significantly alter dopamine transporter uptake in the Drosophila central nervous system. Taken together, these data indicate dopamine uptake in the Drosophila brain is decreased by psychostimulants as observed in mammals. This validates the use of Drosophila as a model system for future studies into the cellular and molecular mechanisms underlying drug addiction in humans.

References

  1. J Neurochem. 1991 Jul;57(1):103-19 - PubMed
  2. Science. 2007 Jun 29;316(5833):1901-4 - PubMed
  3. Eur J Pharmacol. 1999 Oct 1;382(1):45-9 - PubMed
  4. J Neurosci. 2004 Dec 1;24(48):10993-8 - PubMed
  5. Anal Chem. 1988 Jul 1;60(13):1268-72 - PubMed
  6. Curr Opin Neurobiol. 2002 Dec;12(6):639-45 - PubMed
  7. Anal Chem. 2009 Mar 1;81(5):1848-54 - PubMed
  8. Trends Neurosci. 1991 Jul;14(7):299-302 - PubMed
  9. J Pharmacol Exp Ther. 1999 Apr;289(1):266-77 - PubMed
  10. J Neurosci Methods. 2002 Nov 15;121(1):41-52 - PubMed
  11. Eur J Pharmacol. 2000 Sep 29;405(1-3):329-39 - PubMed
  12. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5300-5 - PubMed
  13. Science. 1983 Jul 8;221(4606):169-71 - PubMed
  14. J Neurochem. 1984 Aug;43(2):570-7 - PubMed
  15. Curr Biol. 2000 Feb 24;10(4):211-4 - PubMed
  16. Genes Brain Behav. 2007 Mar;6(2):201-7 - PubMed
  17. Cell. 2003 Jan 24;112(2):271-82 - PubMed
  18. J Neurosci. 2007 Jul 18;27(29):7640-7 - PubMed
  19. Curr Biol. 2000 Feb 24;10(4):187-94 - PubMed
  20. Mol Pharmacol. 2001 Jan;59(1):83-95 - PubMed
  21. Mol Cell Biochem. 2007 Apr;298(1-2):41-8 - PubMed
  22. J Neurosci. 1995 May;15(5 Pt 2):4102-8 - PubMed
  23. Curr Biol. 1998 Jan 15;8(2):109-12 - PubMed
  24. J Neurochem. 1993 Dec;61(6):2269-78 - PubMed
  25. Eur J Pharmacol. 1985 Mar 12;109(3):341-8 - PubMed
  26. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5274-8 - PubMed
  27. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9645-8 - PubMed
  28. J Neurosci Methods. 2009 May 15;179(2):300-8 - PubMed
  29. J Neurosci. 2001 Feb 15;21(4):1413-9 - PubMed
  30. J Neurosci. 2001 May 1;21(9):RC141: 1-4 - PubMed
  31. Nature. 1996 Feb 15;379(6566):606-12 - PubMed
  32. Nat Rev Neurosci. 2000 Dec;1(3):199-207 - PubMed
  33. J Exp Anal Behav. 1973 Jul;20(1):119-29 - PubMed
  34. Analyst. 2003 Dec;128(12):1413-9 - PubMed
  35. Am J Psychiatry. 1998 Oct;155(10):1325-31 - PubMed
  36. Eur J Pharmacol. 2003 Oct 31;479(1-3):159-70 - PubMed
  37. Science. 1987 Sep 4;237(4819):1219-23 - PubMed
  38. Anal Chem. 1998 Sep 1;70(17):586A-592A - PubMed
  39. J Neurosci. 1998 Mar 15;18(6):1979-86 - PubMed
  40. Cell Tissue Res. 1992 Jan;267(1):147-67 - PubMed
  41. Mol Psychiatry. 2006 Jan;11(1):99-113 - PubMed
  42. Trends Genet. 2001 Dec;17(12):719-26 - PubMed
  43. Science. 1991 Oct 25;254(5031):578-9 - PubMed
  44. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6850-5 - PubMed
  45. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3495-500 - PubMed
  46. J Neurosci. 1999 Sep 15;19(18):7699-710 - PubMed
  47. J Neurosci. 2001 Jan 15;21(2):RC121 - PubMed
  48. Synapse. 1998 Jun;29(2):148-61 - PubMed
  49. Arch Gen Psychiatry. 1995 Jun;52(6):456-63 - PubMed
  50. Drugs. 1996 May;51(5):750-9 - PubMed
  51. Eur J Pharmacol. 1984 Sep 17;104(3-4):277-86 - PubMed
  52. Trends Analyt Chem. 2009 Dec 1;28(11):1223-1234 - PubMed
  53. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7699-704 - PubMed
  54. Eur J Pharmacol. 1987 Jul 23;139(3):345-8 - PubMed
  55. J Neurosci Methods. 2000 Feb 15;95(2):95-102 - PubMed

Publication Types

Grant support