Display options
Share it on

J Orthop Surg Res. 2010 Mar 11;5:18. doi: 10.1186/1749-799X-5-18.

Skeletal nutrient vascular adaptation induced by external oscillatory intramedullary fluid pressure intervention.

Journal of orthopaedic surgery and research

Hoyan Lam, Peter Brink, Yi-Xian Qin

Affiliations

  1. Department of Biomedical Engineering, Stony Brook University, Bioengineering Building Stony Brook, NY 11794, USA.

PMID: 20222973 PMCID: PMC2845561 DOI: 10.1186/1749-799X-5-18

Abstract

BACKGROUND: Interstitial fluid flow induced by loading has demonstrated to be an important mediator for regulating bone mass and morphology. It is shown that the fluid movement generated by the intramedullary pressure (ImP) provides a source for pressure gradient in bone. Such dynamic ImP may alter the blood flow within nutrient vessel adjacent to bone and directly connected to the marrow cavity, further initiating nutrient vessel adaptation. It is hypothesized that oscillatory ImP can mediate the blood flow in the skeletal nutrient vessels and trigger vasculature remodeling. The objective of this study was then to evaluate the vasculature remodeling induced by dynamic ImP stimulation as a function of ImP frequency.

METHODS: Using an avian model, dynamics physiological fluid ImP (70 mmHg, peak-peak) was applied in the marrow cavity of the left ulna at either 3 Hz or 30 Hz, 10 minutes/day, 5 days/week for 3 or 4 weeks. The histomorphometric measurements of the principal nutrient arteries were done to quantify the arterial wall area, lumen area, wall thickness, and smooth muscle cell layer numbers for comparison.

RESULTS: The preliminary results indicated that the acute cyclic ImP stimuli can significantly enlarge the nutrient arterial wall area up to 50%, wall thickness up to 20%, and smooth muscle cell layer numbers up to 37%. In addition, 3-week of acute stimulation was sufficient to alter the arterial structural properties, i.e., increase of arterial wall area, whereas 4-week of loading showed only minimal changes regardless of the loading frequency.

CONCLUSIONS: These data indicate a potential mechanism in the interrelationship between vasculature adaptation and applied ImP alteration. Acute ImP could possibly initiate the remodeling in the bone nutrient vasculature, which may ultimately alter blood supply to bone.

References

  1. Blood Vessels. 1976;13(1-2):100-28 - PubMed
  2. Exerc Sport Sci Rev. 1989;17:379-422 - PubMed
  3. Yonsei Med J. 1986;27(2):91-9 - PubMed
  4. J Bone Joint Surg Br. 1987 Mar;69(2):326-9 - PubMed
  5. Surg Gynecol Obstet. 1972 Sep;135(3):353-60 - PubMed
  6. Aerosp Med. 1970 Sep;41(9):1018-21 - PubMed
  7. J Bone Joint Surg Br. 1968 Feb;50(1):178-83 - PubMed
  8. Hypertension. 1984 Nov-Dec;6(6 Pt 2):III13-8 - PubMed
  9. Acta Orthop Scand. 1983 Feb;54(1):53-7 - PubMed
  10. Crit Rev Biomed Eng. 1982;8(1):1-28 - PubMed
  11. Can J Physiol Pharmacol. 1995 May;73(5):574-84 - PubMed
  12. J Bone Joint Surg Br. 1995 Nov;77(6):981-2 - PubMed
  13. Circulation. 1995 Sep 1;92(5):1223-9 - PubMed
  14. J Biomech. 1994 Mar;27(3):339-60 - PubMed
  15. Acta Orthop Scand Suppl. 1994 Apr;257:1-41 - PubMed
  16. Front Med Biol Eng. 1993;5(1):37-43 - PubMed
  17. J Biomech Eng. 1995 Aug;117(3):358-63 - PubMed
  18. Bone. 1996 May;18(5):405-10 - PubMed
  19. J Bone Joint Surg Am. 1996 Oct;78(10):1523-33 - PubMed
  20. Circ Res. 1996 Nov;79(5):1015-23 - PubMed
  21. J Mol Cell Cardiol. 1996 Sep;28(9):2005-16 - PubMed
  22. Am J Physiol. 1998 Mar;274(3 Pt 2):H874-82 - PubMed
  23. J Orthop Res. 1998 Jul;16(4):482-9 - PubMed
  24. Orthopedics. 1999 Feb;22(2):239-41 - PubMed
  25. Fundam Clin Pharmacol. 1999;13(3):300-9 - PubMed
  26. Med Hypotheses. 1999 Nov;53(5):363-8 - PubMed
  27. Biochem Biophys Res Commun. 2000 Apr 13;270(2):643-8 - PubMed
  28. Hypertension. 2000 Jul;36(1):89-96 - PubMed
  29. Circ Res. 2001 Jul 20;89(2):180-6 - PubMed
  30. Exp Mol Pathol. 2002 Apr;72(2):150-60 - PubMed
  31. Ann Biomed Eng. 2002 May;30(5):693-702 - PubMed
  32. J Bone Miner Res. 2002 Sep;17(9):1613-20 - PubMed
  33. J Vasc Surg. 2003 Jun;37(6):1277-84 - PubMed
  34. J Orthop Sci. 2003;8(3):273-8 - PubMed
  35. J Biomech. 2003 Oct;36(10):1427-37 - PubMed
  36. J Biomech. 2003 Oct;36(10):1439-51 - PubMed
  37. Bone. 2004 Mar;34(3):562-9 - PubMed
  38. Am J Physiol Heart Circ Physiol. 2004 Aug;287(2):H905-13 - PubMed
  39. Bone. 2006 Sep;39(3):565-72 - PubMed
  40. Age Ageing. 2006 Sep;35 Suppl 2:ii32-ii36 - PubMed
  41. Bone. 2007 Feb;40(2):538-43 - PubMed
  42. Med Biol Eng Comput. 2008 May;46(5):461-7 - PubMed
  43. Bone. 2008 Dec;43(6):1093-100 - PubMed
  44. Med Sci Sports Exerc. 2008 Nov;40(11 Suppl):S660-70 - PubMed
  45. Med Sci Sports Exerc. 2008 Nov;40(11 Suppl):S636-44 - PubMed
  46. Med Sci Sports Exerc. 2008 Nov;40(11 Suppl):S609-22 - PubMed
  47. J Neurosurg. 2008 Dec;109(6):1141-7 - PubMed
  48. J Biomech. 2009 Jan 19;42(2):140-5 - PubMed
  49. EuroIntervention. 2008 Aug;4 Suppl C:C27-32 - PubMed

Publication Types

Grant support