Display options
Share it on

Adv Synth Catal. 2009 Nov;351(17):2976-2990. doi: 10.1002/adsc.200900603.

Asymmetric Reduction of Activated Alkenes by Pentaerythritol Tetranitrate Reductase: Specificity and Control of Stereochemical Outcome by Reaction Optimisation.

Advanced synthesis & catalysis

Anna Fryszkowska, Helen Toogood, Michiyo Sakuma, John M Gardiner, Gill M Stephens, Nigel S Scrutton

Affiliations

  1. Manchester Interdisciplinary Biocentre, The School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.

PMID: 20396613 PMCID: PMC2854813 DOI: 10.1002/adsc.200900603

Abstract

We show that pentaerythritol tetranitrate reductase (PETNR), a member of the 'ene' reductase old yellow enzyme family, catalyses the asymmetric reduction of a variety of industrially relevant activated alpha,beta-unsaturated alkenes including enones, enals, maleimides and nitroalkenes. We have rationalised the broad substrate specificity and stereochemical outcome of these reductions by reference to molecular models of enzyme-substrate complexes based on the crystal complex of the PETNR with 2-cyclohexenone 4a. The optical purity of products is variable (49-99% ee), depending on the substrate type and nature of substituents. Generally, high enantioselectivity was observed for reaction products with stereogenic centres at Cbeta (>99% ee). However, for the substrates existing in two isomeric forms (e.g., citral 11a or nitroalkenes 18-19a), an enantiodivergent course of the reduction of E/Z-forms may lead to lower enantiopurities of the products. We also demonstrate that the poor optical purity obtained for products with stereogenic centres at Calpha is due to non-enzymatic racemisation. In reactions with ketoisophorone 3a we show that product racemisation is prevented through reaction optimisation, specifically by shortening reaction time and through control of solution pH. We suggest this as a general strategy for improved recovery of optically pure products with other biocatalytic conversions where there is potential for product racemisation.

References

  1. Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3 - PubMed
  2. J Biol Chem. 2004 Jul 16;279(29):30563-72 - PubMed
  3. Curr Opin Chem Biol. 2007 Apr;11(2):203-13 - PubMed
  4. Biotechnol Bioeng. 2007 Sep 1;98(1):22-9 - PubMed
  5. Angew Chem Int Ed Engl. 2007;46(21):3934-7 - PubMed
  6. J Am Chem Soc. 2009 Mar 11;131(9):3271-80 - PubMed
  7. Biotechnol Bioeng. 2008 Nov 1;101(4):647-53 - PubMed
  8. Org Lett. 2007 Dec 20;9(26):5409-11 - PubMed
  9. Org Lett. 2006 Dec 21;8(26):6131-3 - PubMed
  10. Structure. 1994 Nov 15;2(11):1089-105 - PubMed
  11. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10733-8 - PubMed
  12. Appl Environ Microbiol. 2004 Jun;70(6):3566-74 - PubMed
  13. Adv Synth Catal. 2008 Nov 17;350(17):2789-2803 - PubMed
  14. J Comput Chem. 2005 Dec;26(16):1668-88 - PubMed
  15. FEBS J. 2009 Sep;276(17):4780-9 - PubMed
  16. J Bacteriol. 1996 Nov;178(22):6623-7 - PubMed
  17. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55 - PubMed
  18. J Mol Biol. 2001 Jul 6;310(2):433-47 - PubMed
  19. J Agric Food Chem. 2008 Dec 24;56(24):11740-51 - PubMed
  20. J Org Chem. 1998 Apr 17;63(8):2646-2655 - PubMed
  21. J Org Chem. 2008 Jun 6;73(11):4295-8 - PubMed
  22. Microbiology (Reading). 2002 Jun;148(Pt 6):1607-1614 - PubMed
  23. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 - PubMed
  24. J Org Chem. 2006 May 26;71(11):4339-42 - PubMed
  25. Trends Biochem Sci. 2000 Mar;25(3):126-32 - PubMed
  26. J Am Chem Soc. 2008 Jun 18;130(24):7655-8 - PubMed
  27. J Biol Chem. 2002 Jun 14;277(24):21906-12 - PubMed
  28. Angew Chem Int Ed Engl. 2008;47(46):8782-93 - PubMed

Publication Types

Grant support