Display options
Share it on

Metabolomics. 2009 Dec;5(4):479-496. doi: 10.1007/s11306-009-0169-z. Epub 2009 Jul 24.

Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics.

Metabolomics : Official journal of the Metabolomic Society

J William Allwood, Alexander Erban, Sjaak de Koning, Warwick B Dunn, Alexander Luedemann, Arjen Lommen, Lorraine Kay, Ralf Löscher, Joachim Kopka, Royston Goodacre

PMID: 20376177 PMCID: PMC2847149 DOI: 10.1007/s11306-009-0169-z

Abstract

The application of gas chromatography-mass spectrometry (GC-MS) to the 'global' analysis of metabolites in complex samples (i.e. metabolomics) has now become routine. The generation of these data-rich profiles demands new strategies in data mining and standardisation of experimental and reporting aspects across laboratories. As part of the META-PHOR project's (METAbolomics for Plants Health and OutReach: http://www.meta-phor.eu/) priorities towards robust technology development, a GC-MS ring experiment based upon three complex matrices (melon, broccoli and rice) was launched. All sample preparation, data processing, multivariate analyses and comparisons of major metabolite features followed standardised protocols, identical models of GC (Agilent 6890N) and TOF/MS (Leco Pegasus III) were also employed. In addition comprehensive GCxGC-TOF/MS was compared with 1 dimensional GC-TOF/MS. Comparisons of the paired data from the various laboratories were made with a single data processing and analysis method providing an unbiased assessment of analytical method variants and inter-laboratory reproducibility. A range of processing and statistical methods were also assessed with a single exemplary dataset revealing near equal performance between them. Further investigations of long-term reproducibility are required, though the future generation of global and valid metabolomics databases offers much promise.

References

  1. Nat Biotechnol. 2004 Dec;22(12):1601-6 - PubMed
  2. Nat Biotechnol. 2000 Nov;18(11):1157-61 - PubMed
  3. Environ Health Perspect. 2004 Mar;112(4):417-9 - PubMed
  4. Toxicol Sci. 2004 Jun;79(2):411-22 - PubMed
  5. Trends Plant Sci. 2006 Oct;11(10):508-16 - PubMed
  6. Trends Cogn Sci. 2002 Feb 1;6(2):59-64 - PubMed
  7. New Phytol. 2006;169(3):453-68 - PubMed
  8. Physiol Plant. 2008 Feb;132(2):162-75 - PubMed
  9. Methods Mol Biol. 2007;358:19-38 - PubMed
  10. Talanta. 1998 Jul;46(3):423-37 - PubMed
  11. Metabolomics. 2007 Sep;3(3):211-221 - PubMed
  12. Bioinformatics. 2008 Mar 1;24(5):732-7 - PubMed
  13. Anal Chem. 2009 Apr 15;81(8):3079-86 - PubMed
  14. Anal Chem. 2005 Jan 1;77(1):290-303 - PubMed
  15. Nat Rev Mol Cell Biol. 2004 Sep;5(9):763-9 - PubMed
  16. Plant J. 2000 Jul;23(1):131-42 - PubMed
  17. Bioinformatics. 2005 Oct 15;21(20):3887-95 - PubMed
  18. Anal Chem. 2009 Apr 15;81(8):2884-94 - PubMed
  19. Phys Biol. 2008 Feb 20;5(1):011001 - PubMed
  20. Biotechniques. 2003 Feb;34(2):374-8 - PubMed
  21. Plant J. 2002 Dec;32(6):1033-48 - PubMed
  22. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2374-6 - PubMed
  23. Biochem Pharmacol. 2003 Mar 1;65(5):857-75 - PubMed
  24. Bioinformatics. 2005 Apr 15;21(8):1635-8 - PubMed
  25. Nat Protoc. 2007;2(4):778-91 - PubMed
  26. Bioinformatics. 2003 Nov 22;19(17):2332-3 - PubMed
  27. Proteomics. 2004 Apr;4(4):1014-28 - PubMed
  28. Methods Enzymol. 2006;411:134-93 - PubMed
  29. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14458-62 - PubMed
  30. J Agric Food Chem. 2006 Nov 29;54(24):8984-94 - PubMed
  31. Plant J. 2008 Feb;53(4):691-704 - PubMed
  32. Anal Chem. 2000 Aug 1;72(15):3573-80 - PubMed
  33. Nat Protoc. 2006;1(1):387-96 - PubMed
  34. J Agric Food Chem. 2007 May 2;55(9):3444-51 - PubMed
  35. Anal Chim Acta. 2007 Feb 12;584(1):43-9 - PubMed
  36. J Agric Food Chem. 2007 Jan 24;55(2):231-6 - PubMed
  37. Bioinformatics. 2004 Oct 12;20(15):2447-54 - PubMed

Publication Types