Display options
Share it on

Front Neural Circuits. 2010 Apr 22;4:11. doi: 10.3389/fncir.2010.00011. eCollection 2010.

Orchestration of "presto" and "largo" synchrony in up-down activity of cortical networks.

Frontiers in neural circuits

Francesca Gullo, Samanta Mazzetti, Andrea Maffezzoli, Elena Dossi, Marzia Lecchi, Alida Amadeo, Jeffrey Krajewski, Enzo Wanke

Affiliations

  1. Department of Biotechnologies and Biosciences, University of Milano-Bicocca Milan, Italy.

PMID: 20461235 PMCID: PMC2866559 DOI: 10.3389/fncir.2010.00011

Abstract

It has been demonstrated using single-cell and multiunit electrophysiology in layer III entorhinal cortex and disinhibited hippocampal CA3 slices that the balancing of the up-down activity is characterized by both GABA(A) and GABA(B) mechanisms. Here we report novel results obtained using multi-electrode array (60 electrodes) simultaneous recordings from reverberating postnatal neocortical networks containing 19.2 +/- 1.4% GABAergic neurons, typical of intact tissue. We observed that in each spontaneous active-state the total number of spikes in identified clusters of excitatory and inhibitory neurons is almost equal, thus suggesting a balanced average activity. Interestingly, in the active-state, the early phase is sustained by only 10% of the total spikes and the firing rate follows a sigmoidal regenerative mode up to peak at 35 ms with the number of excitatory spikes greater than inhibitory, therefore indicating an early unbalance. Concentration-response pharmacology of up- and down-state lifetimes in clusters of excitatory (n = 1067) and inhibitory (n = 305) cells suggests that, besides the GABA(A) and GABA(B) mechanisms, others such as GAT-1-mediated uptake, I(h), I(NaP) and I(M) ion channel activity, robustly govern both up- and down-activity. Some drugs resulted to affect up- and/or down-states with different IC(50)s, providing evidence that various mechanisms are involved. These results should reinforce not only the role of synchrony in CNS networks, but also the recognized analogies between the Hodgkin-Huxley action potential and the population bursts as basic mechanisms for originating membrane excitability and CNS network synchronization, respectively.

Keywords: GABA; IM channels; INaP channels; Ih channels; MEA recording; bursts; synchrony

References

  1. Nat Genet. 1998 Jan;18(1):53-5 - PubMed
  2. J Neurosci Methods. 2009 Mar 15;177(2):386-96 - PubMed
  3. Neuroscience. 2005;134(2):425-37 - PubMed
  4. Arch Neurol. 2003 Apr;60(4):496-500 - PubMed
  5. J Comp Neurol. 1997 Jan 27;377(4):465-99 - PubMed
  6. Trends Neurosci. 2003 Apr;26(4):199-206 - PubMed
  7. J Neurobiol. 1998 Oct;37(1):110-30 - PubMed
  8. J Neurosci. 2005 Jul 6;25(27):6322-8 - PubMed
  9. Eur J Neurosci. 2003 Oct;18(8):2110-8 - PubMed
  10. Dev Neurobiol. 2009 Feb 1-15;69(2-3):105-23 - PubMed
  11. Eur J Neurosci. 2004 May;19(10):2815-25 - PubMed
  12. J Neurosci. 2006 Mar 22;26(12):3229-44 - PubMed
  13. Nat Neurosci. 2004 May;7(5):446-51 - PubMed
  14. J Physiol. 1975 Jun;248(1):45-82 - PubMed
  15. Proc Biol Sci. 1997 Dec 22;264(1389):1775-83 - PubMed
  16. J Neurophysiol. 2004 Aug;92(2):977-96 - PubMed
  17. Trends Neurosci. 2004 May;27(5):262-9 - PubMed
  18. Science. 1998 Jul 24;281(5376):559-62 - PubMed
  19. J Physiol. 1981 Aug;317:519-35 - PubMed
  20. Nature. 1980 Feb 14;283(5748):673-6 - PubMed
  21. J Neurosci Methods. 2009 Jul 30;181(2):186-98 - PubMed
  22. Neuropharmacology. 2006 Sep;51(3):681-91 - PubMed
  23. Eur J Neurosci. 2008 May;27(10):2501-14 - PubMed
  24. J Neurophysiol. 2008 Mar;99(3):1461-76 - PubMed
  25. Mol Pharmacol. 2000 May;57(5):906-12 - PubMed
  26. Neurochem Int. 1996 Oct;29(4):335-56 - PubMed
  27. J Physiol. 2004 Oct 15;560(Pt 2):377-90 - PubMed
  28. J Physiol. 2007 Apr 15;580(Pt. 2):411-22 - PubMed
  29. Neurosci Lett. 2004 May 6;361(1-3):86-9 - PubMed
  30. Neuron. 2006 Jan 5;49(1):131-42 - PubMed
  31. Nat Rev Neurosci. 2002 Sep;3(9):715-27 - PubMed
  32. Neuron. 2004 Sep 2;43(5):729-43 - PubMed
  33. J Comput Neurosci. 2008 Jun;24(3):346-57 - PubMed
  34. Biosens Bioelectron. 2009 Mar 15;24(7):2191-8 - PubMed
  35. Nat Neurosci. 2000 May;3(5):452-9 - PubMed
  36. Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12272-7 - PubMed
  37. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4914-9 - PubMed
  38. J Neurophysiol. 2000 Sep;84(3):1681-91 - PubMed
  39. J Neurosci. 2002 May 15;22(10):RC223 - PubMed
  40. J Neurophysiol. 2003 Oct;90(4):2494-503 - PubMed
  41. Eur J Neurosci. 2004 Jun;19(11):2931-43 - PubMed
  42. Eur J Neurosci. 2004 Aug;20(4):976-88 - PubMed
  43. Mol Pharmacol. 2008 Mar;73(3):977-86 - PubMed
  44. Nature. 2006 Jan 5;439(7072):79-83 - PubMed
  45. J Neurophysiol. 2003 Apr;89(4):2021-34 - PubMed
  46. J Neurosci. 2008 May 28;28(22):5696-709 - PubMed
  47. Eur J Neurosci. 2007 Jan;25(1):1-16 - PubMed
  48. J Neurosci Res. 2008 Aug 15;86(11):2363-75 - PubMed
  49. Neuroscience. 2005;133(4):1007-19 - PubMed
  50. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4313-7 - PubMed
  51. Neuron. 2007 Dec 6;56(5):851-65 - PubMed
  52. J Neurosci. 2006 Aug 16;26(33):8465-76 - PubMed
  53. Synapse. 2002 Mar 15;43(4):244-51 - PubMed
  54. Trends Neurosci. 1997 Jan;20(1):38-43 - PubMed
  55. Neuroscience. 2009 Feb 18;158(4):1616-24 - PubMed
  56. Pflugers Arch. 1997 Dec;435(1):99-106 - PubMed
  57. J Physiol. 2006 May 15;573(Pt 1):17-34 - PubMed
  58. J Comp Neurol. 1997 Dec 1;388(4):526-40 - PubMed
  59. Curr Opin Neurobiol. 1994 Aug;4(4):535-44 - PubMed
  60. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):8054-8 - PubMed
  61. J Neurosci. 1996 Oct 15;16(20):6374-85 - PubMed
  62. BMC Neurosci. 2006 Feb 07;7:11 - PubMed
  63. Annu Rev Physiol. 2003;65:453-80 - PubMed
  64. Eur J Neurosci. 2007 Oct;26(7):1995-2004 - PubMed
  65. J Neurobiol. 2002 Apr;51(1):9-23 - PubMed
  66. Brain Res Dev Brain Res. 2004 Sep 17;152(2):99-108 - PubMed
  67. J Physiol. 1990 Dec;431:291-318 - PubMed
  68. J Neurosci. 2001 Dec 15;21(24):9529-40 - PubMed
  69. J Neurophysiol. 2007 May;97(5):3607-20 - PubMed
  70. Biosens Bioelectron. 2005 Apr 15;20(10):2071-8 - PubMed
  71. J Neurophysiol. 2004 Nov;92(5):2762-70 - PubMed
  72. J Neurosci. 2004 Jun 2;24(22):5216-29 - PubMed
  73. Nat Rev Neurosci. 2005 May;6(5):399-407 - PubMed
  74. Biosens Bioelectron. 2004 Feb 15;19(7):675-83 - PubMed
  75. Neurobiol Dis. 2000 Aug;7(4):375-83 - PubMed
  76. J Neurophysiol. 2000 Jul;84(1):390-400 - PubMed
  77. J Physiol. 2003 Jan 15;546(Pt 2):439-53 - PubMed
  78. Neuron. 2000 Mar;25(3):673-81 - PubMed
  79. J Neurosci Methods. 2005 Jun 15;144(2):165-73 - PubMed
  80. Cereb Cortex. 2003 Jun;13(6):677-83 - PubMed
  81. Q Rev Biophys. 2002 Feb;35(1):63-87 - PubMed
  82. IEEE Trans Biomed Eng. 1989 Jan;36(1):150-60 - PubMed
  83. Nat Rev Neurosci. 2005 Mar;6(3):215-29 - PubMed
  84. J Neurosci. 2009 Jun 10;29(23):7513-7518 - PubMed
  85. J Neurosci. 2003 Dec 3;23(35):11167-77 - PubMed
  86. J Neurophysiol. 2004 Jul;92(1):600-8 - PubMed
  87. Neuron. 1993 Jun;10(6):1101-11 - PubMed
  88. Neuron. 1997 Sep;19(3):665-78 - PubMed
  89. Neurotoxicology. 2007 Nov;28(6):1136-46 - PubMed
  90. Dev Neurobiol. 2008 Jun;68(7):934-49 - PubMed
  91. J Neurophysiol. 2001 Dec;86(6):3030-42 - PubMed

Publication Types