Display options
Share it on

Glob Change Biol Bioenergy. 2009 Feb 18;1(1):2-17. doi: 10.1111/j.1757-1707.2009.01004.x.

Enzymatic deconstruction of xylan for biofuel production.

Global change biology. Bioenergy

Dylan Dodd, Isaac K O Cann

Affiliations

  1. Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.

PMID: 20431716 PMCID: PMC2860967 DOI: 10.1111/j.1757-1707.2009.01004.x

Abstract

The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO(2)) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO(2) into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction.

References

  1. J Biotechnol. 2006 Feb 10;121(3):338-45 - PubMed
  2. Biochem J. 2009 Feb 15;418(1):39-47 - PubMed
  3. J Biol Chem. 2004 Mar 5;279(10):9606-14 - PubMed
  4. Curr Microbiol. 2001 Oct;43(4):293-8 - PubMed
  5. Nucleic Acids Res. 1990 Feb 11;18(3):671 - PubMed
  6. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D247-51 - PubMed
  7. J Biol Chem. 1994 Aug 19;269(33):20811-4 - PubMed
  8. Carbohydr Res. 2007 Apr 9;342(5):724-35 - PubMed
  9. Curr Opin Plant Biol. 2008 Jun;11(3):301-7 - PubMed
  10. Biotechnol Adv. 2006 Sep-Oct;24(5):452-81 - PubMed
  11. Nat Struct Biol. 1996 Jul;3(7):638-48 - PubMed
  12. J Bacteriol. 2000 Sep;182(17):4836-40 - PubMed
  13. Curr Opin Biotechnol. 2007 Jun;18(3):237-45 - PubMed
  14. Microbiol Mol Biol Rev. 2006 Jun;70(2):283-95 - PubMed
  15. Microbiol Rev. 1988 Sep;52(3):305-17 - PubMed
  16. Appl Environ Microbiol. 2002 Apr;68(4):1485-90 - PubMed
  17. Curr Opin Microbiol. 2003 Jun;6(3):219-28 - PubMed
  18. Carbohydr Res. 1990 May 15;199(1):91-109 - PubMed
  19. J Comput Chem. 2004 Oct;25(13):1605-12 - PubMed
  20. Curr Opin Biotechnol. 2008 Jun;19(3):202-9 - PubMed
  21. J Agric Food Chem. 2001 Nov;49(11):5122-9 - PubMed
  22. Appl Microbiol Biotechnol. 2006 Dec;73(4):850-61 - PubMed
  23. J Biol Chem. 2004 Mar 5;279(10):9597-605 - PubMed
  24. J Biol Chem. 2004 Mar 19;279(12):11777-88 - PubMed
  25. Biochem J. 1997 Dec 15;328 ( Pt 3):945-9 - PubMed
  26. Arch Biochem Biophys. 2008 Jun 1;474(1):157-66 - PubMed
  27. J Mol Biol. 2008 Feb 1;375(5):1293-305 - PubMed
  28. Biochem J. 1997 Jan 15;321 ( Pt 2):557-9 - PubMed
  29. Trends Biochem Sci. 2004 Jul;29(7):335-9 - PubMed
  30. J Biotechnol. 1997 Sep 16;57(1-3):151-66 - PubMed
  31. Appl Microbiol Biotechnol. 2009 Jan;81(5):855-63 - PubMed
  32. J Biol Chem. 2006 Apr 21;281(16):10968-75 - PubMed
  33. Annu Rev Biochem. 1977;46:331-58 - PubMed
  34. Structure. 2002 Apr;10(4):547-56 - PubMed
  35. Biochem J. 1990 Dec 1;272(2):369-76 - PubMed
  36. Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 - PubMed
  37. J Mol Biol. 2006 May 26;359(1):97-109 - PubMed
  38. Eur J Biochem. 1992 Feb 15;204(1):191-6 - PubMed
  39. Appl Microbiol Biotechnol. 2001 Jul;56(1-2):120-5 - PubMed
  40. Appl Environ Microbiol. 2008 Dec;74(24):7482-9 - PubMed
  41. J Biol Chem. 2001 Dec 28;276(52):49061-5 - PubMed
  42. Curr Opin Plant Biol. 2008 Jun;11(3):338-48 - PubMed
  43. Adv Carbohydr Chem. 1964;19:247-302 - PubMed
  44. Biochem Biophys Res Commun. 1980 May 14;94(1):248-54 - PubMed
  45. J Biol Chem. 2004 Jun 18;279(25):26619-26 - PubMed
  46. Biochim Biophys Acta. 1982 May 21;704(1):114-22 - PubMed
  47. Curr Biol. 2007 Feb 20;17(4):R115-9 - PubMed
  48. Nature. 2001 Aug 23;412(6849):835-8 - PubMed
  49. Biotechnol Lett. 2008 Sep;30(9):1515-24 - PubMed
  50. Biochem J. 1991 Dec 1;280 ( Pt 2):309-16 - PubMed
  51. J Mol Biol. 2005 Oct 7;352(5):1060-7 - PubMed
  52. Biotechnol Lett. 2008 Jul;30(7):1139-50 - PubMed
  53. Structure. 2001 Nov;9(11):1005-16 - PubMed
  54. Adv Appl Microbiol. 2000;47:221-68 - PubMed
  55. Plant Cell. 2002 May;14(5):1033-52 - PubMed
  56. Appl Microbiol Biotechnol. 1997 Mar;47(3):231-5 - PubMed
  57. FEBS Lett. 1996 Nov 25;398(1):7-11 - PubMed
  58. Biochemistry. 2005 Dec 20;44(50):16529-39 - PubMed
  59. Appl Microbiol Biotechnol. 2005 Jun;67(5):641-7 - PubMed
  60. Appl Microbiol Biotechnol. 2007 Jul;75(6):1309-17 - PubMed
  61. Eur J Biochem. 1981 Oct;119(3):559-64 - PubMed
  62. J Ind Microbiol Biotechnol. 2003 May;30(5):279-91 - PubMed
  63. Mol Microbiol. 2008 May;68(3):547-59 - PubMed
  64. FEMS Microbiol Rev. 2005 Jan;29(1):3-23 - PubMed
  65. Structure. 1999 Feb 15;7(2):179-90 - PubMed
  66. J Biol Chem. 2004 Jan 23;279(4):3014-24 - PubMed
  67. Appl Biochem Biotechnol. 2005 Spring;121-124:1081-99 - PubMed
  68. Appl Biochem Biotechnol. 2007 Apr;141(1):51-76 - PubMed
  69. Proteins. 2000 Nov 1;41(2):257-69 - PubMed
  70. Science. 2007 Feb 9;315(5813):804-7 - PubMed
  71. Crit Rev Biotechnol. 1997;17(1):39-67 - PubMed

Publication Types

Grant support