Display options
Share it on

Commun Integr Biol. 2010 Mar;3(2):110-5. doi: 10.4161/cib.3.2.10520.

Sex and stripping: The key to the intimate relationship between Wolbachia and host?.

Communicative & integrative biology

Ilaria Negri, Marco Pellecchia, Pierre Grève, Daniele Daffonchio, Claudio Bandi, Alberto Alma

PMID: 20585501 PMCID: PMC2889965 DOI: 10.4161/cib.3.2.10520

Abstract

Wolbachia pipientis is known to infect only arthropods and nematodes (mainly filarial worms). A unique feature shared by the two Phyla is the ability to replace the exoskeleton, a process known as ecdysis. This shared characteristic is thought to reflect a common ancestry. Arthropod moulting is induced by the steroid hormone 20-hydroxyecdysone (20E) and a role for ecdysteroids in nematode ecdysis has also been suggested. Removing Wolbachia from filarial worms impairs the host's development. From analyses of the genome of Wolbachia harbored by the filarial nematode Brugia malayi and that of its host, the bacterium may provide a source of heme, an essential component of cytochrome P450's that are necessary for steroid hormone biosynthetic pathways.In arthropods, Wolbachia is a reproductive manipulator, inducing various phenotypic effects that may be due to differences in host physiology, in particular, endocrine-related processes governing development and reproduction. Insect steroids have well-defined roles in the coordination of multiple developmental processes, and in adults they control important aspects of reproduction, including ovarian development, oogenesis, sexual behavior, and in some taxa vitellogenin biosynthesis.According to some authors ecdysteroids may also act as sex hormones. In insects sex differentiation is generally thought to be a strictly genetic process, in which each cell decides its own sexual fate based on its sex chromosome constitution, but, surprisingly, recent data demonstrate that in Drosophila sex determination is not cell-autonomous, as it happens in mammals. Thus the presence of signals coordinating the development of a gender-specific phenotype cannot be excluded.This could explain why Wolbachia interferes with insect reproduction; and also could explain why Wolbachia interferes with insect development.Thus, is "sex (=reproduction) and stripping (=ecdysis)" the key to the intimate relationship between Wolbachia and its host?

Keywords: arthropods; ecdysis; ecdysteroids; hormonal pathways; insulin; nematodes; wolbachia

References

  1. Environ Toxicol Chem. 2008 Jun;27(6):1343-53 - PubMed
  2. Cell. 2006 Mar 24;124(6):1209-23 - PubMed
  3. Heredity (Edinb). 1999 Jul;83 (Pt 1):71-8 - PubMed
  4. Nat Rev Microbiol. 2008 Oct;6(10):741-51 - PubMed
  5. Zoolog Sci. 2003 Jan;20(1):75-81 - PubMed
  6. BMC Biol. 2007 Mar 15;5:9 - PubMed
  7. Annu Rev Genet. 2008;42:165-90 - PubMed
  8. Int J Parasitol. 1999 Feb;29(2):357-64 - PubMed
  9. Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8909-10 - PubMed
  10. Curr Biol. 2005 Jul 12;15(13):R507-9 - PubMed
  11. Semin Cell Dev Biol. 2007 Jun;18(3):379-88 - PubMed
  12. PLoS Biol. 2007 May;5(5):e114 - PubMed
  13. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6247-52 - PubMed
  14. Biochem Biophys Res Commun. 1999 Oct 22;264(2):419-23 - PubMed
  15. PLoS Biol. 2005 Apr;3(4):e121 - PubMed
  16. Development. 2000 Feb;127(4):667-77 - PubMed
  17. Gen Comp Endocrinol. 2007 Jan 15;150(2):326-36 - PubMed
  18. Mol Biochem Parasitol. 2008 Jan;157(1):92-7 - PubMed
  19. Dev Biol. 2006 Sep 1;297(1):158-71 - PubMed
  20. Science. 2007 Sep 21;317(5845):1756-60 - PubMed
  21. Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11043-8 - PubMed
  22. Int J Parasitol. 2008 Jul;38(8-9):981-7 - PubMed
  23. Prog Neurobiol. 2002 Sep;68(1):1-84 - PubMed
  24. FEBS J. 2009 Mar;276(5):1221-32 - PubMed
  25. Eur J Biochem. 1999 Jun;262(3):727-36 - PubMed
  26. Behav Genet. 2007 May;37(3):507-12 - PubMed
  27. Development. 2004 Jun;131(11):2715-25 - PubMed
  28. Ecotoxicol Environ Saf. 2001 Jun;49(2):171-8 - PubMed
  29. J Exp Biol. 2003 Jun;206(Pt 11):1791-7 - PubMed
  30. FEMS Microbiol Ecol. 2007 Aug;61(2):235-45 - PubMed
  31. Proc Biol Sci. 2009 Aug 7;276(1668):2805-11 - PubMed
  32. Science. 2003 Sep 26;301(5641):1911-4 - PubMed
  33. Dev Biol. 2005 Jun 15;282(2):385-96 - PubMed
  34. Genome. 2007 Jul;50(7):645-52 - PubMed
  35. Ecotoxicology. 2007 Feb;16(1):15-28 - PubMed
  36. Proc Biol Sci. 2004 Feb 7;271(1536):251-8 - PubMed
  37. Curr Opin Microbiol. 2007 Jun;10(3):221-4 - PubMed
  38. J Insect Physiol. 2005 Apr;51(4):455-64 - PubMed
  39. PLoS Biol. 2005 Oct;3(10):e349 - PubMed
  40. Vet Parasitol. 2001 Jul 12;98(1-3):215-38 - PubMed
  41. Gen Comp Endocrinol. 2008 Jan 1;155(1):3-13 - PubMed
  42. J Econ Entomol. 2006 Jun;99(3):834-42 - PubMed
  43. Endocrinology. 2009 Mar;150(3):1278-86 - PubMed
  44. Annu Rev Entomol. 2002;47:883-916 - PubMed
  45. Proc Biol Sci. 2009 Jul 7;276(1666):2485-91 - PubMed
  46. Cell. 1999 Jun 25;97(7):865-75 - PubMed
  47. Int J Parasitol. 2002 Nov;32(12):1457-68 - PubMed
  48. Gen Comp Endocrinol. 2004 May 1;136(3):389-97 - PubMed
  49. Gen Comp Endocrinol. 1985 Dec;60(3):463-7 - PubMed
  50. Naturwissenschaften. 2002 Apr;89(4):167-70 - PubMed
  51. Adv Parasitol. 2005;60:245-84 - PubMed
  52. Proc Biol Sci. 2006 Sep 22;273(1599):2409-16 - PubMed
  53. Dev Cell. 2008 Feb;14(2):275-86 - PubMed
  54. Genetics. 2005 Aug;170(4):1667-75 - PubMed
  55. Proc Biol Sci. 2009 Nov 7;276(1674):3799-807 - PubMed
  56. Heredity (Edinb). 1999 Oct;83(# (Pt 4)):469-75 - PubMed
  57. Annu Rev Entomol. 2006;51:1-24 - PubMed
  58. J Insect Sci. 2003;3:11 - PubMed

Publication Types