Display options
Share it on

HFSP J. 2010 Feb;4(1):26-40. doi: 10.2976/1.3267779. Epub 2010 Jan 14.

How protein materials balance strength, robustness, and adaptability.

HFSP journal

Markus J Buehler, Yu Ching Yung

PMID: 20676305 PMCID: PMC2880027 DOI: 10.2976/1.3267779

Abstract

Proteins form the basis of a wide range of biological materials such as hair, skin, bone, spider silk, or cells, which play an important role in providing key functions to biological systems. The focus of this article is to discuss how protein materials are capable of balancing multiple, seemingly incompatible properties such as strength, robustness, and adaptability. To illustrate this, we review bottom-up materiomics studies focused on the mechanical behavior of protein materials at multiple scales, from nano to macro. We focus on alpha-helix based intermediate filament proteins as a model system to explain why the utilization of hierarchical structural features is vital to their ability to combine strength, robustness, and adaptability. Experimental studies demonstrating the activation of angiogenesis, the growth of new blood vessels, are presented as an example of how adaptability of structure in biological tissue is achieved through changes in gene expression that result in an altered material structure. We analyze the concepts in light of the universality and diversity of the structural makeup of protein materials and discuss the findings in the context of potential fundamental evolutionary principles that control their nanoscale structure. We conclude with a discussion of multiscale science in biology and de novo materials design.

References

  1. J Cell Sci. 2004 Sep 15;117(Pt 20):4779-86 - PubMed
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 1):061913 - PubMed
  3. PLoS One. 2009 Jun 23;4(6):e6015 - PubMed
  4. Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):889-94 - PubMed
  5. Proc Natl Acad Sci U S A. 2003 May 13;100(10):5597-600 - PubMed
  6. PLoS One. 2009 Oct 06;4(10):e7294 - PubMed
  7. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15279-84 - PubMed
  8. Curr Mol Med. 2003 Nov;3(7):643-51 - PubMed
  9. J Cell Biol. 1999 Nov 29;147(5):913-20 - PubMed
  10. Nat Mater. 2009 Mar;8(3):175-88 - PubMed
  11. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10603-6 - PubMed
  12. Biophys J. 2008 Apr 1;94(7):2790-9 - PubMed
  13. J Cell Biol. 1991 Apr;113(1):155-60 - PubMed
  14. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1105-6 - PubMed
  15. Nature. 2007 Mar 29;446(7135):497 - PubMed
  16. J Biomech. 2009 Jan 19;42(2):178-82 - PubMed
  17. Nanotechnology. 2009 Feb 18;20(7):075103 - PubMed
  18. Nano Lett. 2008 Feb;8(2):743-8 - PubMed
  19. J Clin Invest. 2004 Feb;113(3):370-8 - PubMed
  20. J Phys Condens Matter. 2009 Jan 21;21(3):035111 - PubMed
  21. Mater Sci Eng A Struct Mater. 2007 Apr;27(3):450-468 - PubMed
  22. Biochim Biophys Acta. 2007 May;1773(5):675-86 - PubMed
  23. Circ Res. 2008 Jun 6;102(11):1307-18 - PubMed
  24. Science. 2002 Mar 1;295(5560):1664-9 - PubMed
  25. PLoS One. 2008 Jun 04;3(6):e2327 - PubMed
  26. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6590-5 - PubMed
  27. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12252-6 - PubMed
  28. Nat Mater. 2007 Aug;6(8):557-62 - PubMed
  29. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10271-10276 - PubMed
  30. Cell Biochem Biophys. 2007;48(1):16-31 - PubMed
  31. Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16410-5 - PubMed

Publication Types