Display options
Share it on

Proteome Sci. 2010 Jul 09;8:38. doi: 10.1186/1477-5956-8-38.

Novel O-palmitolylated beta-E1 subunit of pyruvate dehydrogenase is phosphorylated during ischemia/reperfusion injury.

Proteome science

Clifford Dl Folmes, Grzegorz Sawicki, Virgilio Jj Cadete, Grant Masson, Amy J Barr, Gary D Lopaschuk

Affiliations

  1. Cardiovascular Research Group and the Departments of Pharmacology and Pediatrics, The University of Alberta, Edmonton, Alberta, Canada.
  2. Department of Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  3. Department of Clinical Chemistry, Medical University of Wroclaw, Wroclaw, Poland.

PMID: 20618950 PMCID: PMC2909933 DOI: 10.1186/1477-5956-8-38

Abstract

BACKGROUND: During and following myocardial ischemia, glucose oxidation rates are low and fatty acids dominate as a source of oxidative metabolism. This metabolic phenotype is associated with contractile dysfunction during reperfusion. To determine the mechanism of this reliance on fatty acid oxidation as a source of ATP generation, a functional proteomics approach was utilized.

RESULTS: 2-D gel electrophoresis of mitochondria from working rat hearts subjected to 25 minutes of global no flow ischemia followed by 40 minutes of aerobic reperfusion identified 32 changes in protein abundance compared to aerobic controls. Of the five proteins with the greatest change in abundance, two were increased (long chain acyl-coenzyme A dehydrogenase (48 +/- 1 versus 39 +/- 3 arbitrary units, n = 3, P < 0.05) and alpha subunit of ATP synthase (189 +/- 15 versus 113 +/- 23 arbitrary units, n = 3, P < 0.05)), while two were decreased (24 kDa subunit of NADH-ubiquinone oxidoreductase (94 +/- 7 versus 127 +/- 9 arbitrary units, n = 3, P < 0.05) and D subunit of ATP synthase (230 +/- 11 versus 368 +/- 47 arbitrary units, n = 3, P < 05)). Two forms of pyruvate dehydrogenase betaE1 subunit, the rate-limiting enzyme for glucose oxidation, were also identified. The protein level of the more acidic form of pyruvate dehydrogenase was reduced during reperfusion (37 +/- 4 versus 56 +/- 7 arbitrary units, n = 3, P < 05), while the more basic form remained unchanged. The more acidic isoform was found to be O-palmitoylated, while both isoforms exhibited ischemia/reperfusion-induced phosphorylation. In silico analysis identified the putative kinases as the insulin receptor kinase for the more basic form and protein kinase Czeta or protein kinase A for the more acidic form. These modifications of pyruvate dehydrogenase are associated with a 35% decrease in glucose oxidation during reperfusion.

CONCLUSIONS: Cardiac ischemia/reperfusion induces significant changes to a number of metabolic proteins of the mitochondrial proteome. In particular, ischemia/reperfusion induced the post-translational modification of pyruvate dehydrogenase, the rate-limiting step of glucose oxidation, which is associated with a 35% decrease in glucose oxidation during reperfusion. Therefore these post-translational modifications may have important implications in the regulation of myocardial energy metabolism.

References

  1. Proteomics Clin Appl. 2008 Jun;2(6):845-61 - PubMed
  2. J Mol Cell Cardiol. 1983 Jun;15(6):359-67 - PubMed
  3. Annu Rev Biochem. 2004;73:559-87 - PubMed
  4. Physiol Rev. 2005 Jul;85(3):1093-129 - PubMed
  5. Proteomics. 2004 Jul;4(7):2195-202 - PubMed
  6. Arch Physiol Biochem. 2006 Jul;112(3):139-49 - PubMed
  7. J Gen Physiol. 1987 Jul;90(1):145-65 - PubMed
  8. Circ Res. 2005 Jul 8;97(1):78-85 - PubMed
  9. Proteomics. 2003 Oct;3(10):2044-51 - PubMed
  10. Proteomics. 2006 Dec;6(23):6221-33 - PubMed
  11. Physiol Rev. 1999 Jul;79(3):917-1017 - PubMed
  12. Proteomics. 2006 Feb;6(4):1237-49 - PubMed
  13. J Biol Chem. 2001 Jan 26;276(4):2571-5 - PubMed
  14. Nature. 1999 Dec 9;402(6762):656-60 - PubMed
  15. J Pharmacol Toxicol Methods. 2000 Mar-Apr;43(2):141-52 - PubMed
  16. J Mol Cell Cardiol. 2009 Feb;46(2):268-77 - PubMed
  17. Cardiovasc Drugs Ther. 1990 Aug;4 Suppl 4:777-90 - PubMed
  18. Circ Res. 1990 Feb;66(2):546-53 - PubMed
  19. Am J Physiol Heart Circ Physiol. 2002 Apr;282(4):H1206-15 - PubMed
  20. J Mol Cell Cardiol. 1991 Sep;23(9):1077-86 - PubMed
  21. Cardiovasc Res. 1993 Nov;27(11):2079-80 - PubMed
  22. Methods Enzymol. 1995;250:361-79 - PubMed
  23. Circ Res. 1996 Nov;79(5):940-8 - PubMed
  24. Proteomics. 2002 Aug;2(8):988-95 - PubMed
  25. Nature. 1993 Oct 7;365(6446):496-7 - PubMed
  26. J Clin Invest. 1994 May;93(5):2127-33 - PubMed
  27. J Clin Invest. 1998 Jan 15;101(2):390-7 - PubMed
  28. Am J Med Sci. 1999 Jul;318(1):3-14 - PubMed
  29. Circ Res. 2006 Sep 29;99(7):706-14 - PubMed
  30. Mol Cell Biochem. 1992 Oct 21;116(1-2):103-9 - PubMed
  31. Anal Biochem. 1982 Sep 15;125(2):269-76 - PubMed
  32. Am J Physiol. 1981 Mar;240(3):E268-73 - PubMed
  33. Am J Physiol Heart Circ Physiol. 2004 Aug;287(2):H946-56 - PubMed
  34. Proteomics. 2008 Jun;8(12):2543-55 - PubMed
  35. Proteomics. 2005 Apr;5(5):1395-410 - PubMed
  36. Am J Physiol Endocrinol Metab. 2004 Jul;287(1):E69-74 - PubMed
  37. Circ Res. 2006 Jul 7;99(1):61-8 - PubMed
  38. Circ Res. 1988 Mar;62(3):535-42 - PubMed
  39. Proteomics. 2007 Jul;7(14):2340-9 - PubMed
  40. Nat Biotechnol. 2003 Mar;21(3):281-6 - PubMed
  41. J Proteome Res. 2008 Jun;7(6):2204-14 - PubMed
  42. Cell Mol Life Sci. 2007 Apr;64(7-8):830-49 - PubMed
  43. Science. 1983 Mar 25;219(4591):1391-7 - PubMed
  44. Curr Biol. 1993 Jun 1;3(6):327-32 - PubMed
  45. Histochemie. 1973 Mar 26;34(4):355-60 - PubMed
  46. Am J Physiol Heart Circ Physiol. 2004 Aug;287(2):H937-45 - PubMed
  47. Am Heart J. 1994 Jul;128(1):61-7 - PubMed
  48. Am J Physiol. 1994 Nov;267(5 Pt 2):H1862-71 - PubMed
  49. Curr Opin Mol Ther. 2005 Jun;7(3):234-9 - PubMed
  50. Expert Rev Proteomics. 2006 Apr;3(2):237-49 - PubMed

Publication Types