Display options
Share it on

Soft Matter. 2010 Aug 07;6(15):3669-3679. doi: 10.1039/c000898b.

Spontaneous formation of temperature-responsive assemblies by molecular recognition of a β-cyclodextrin containing block copolymer and poly(N-isopropylacrylamide).

Soft matter

Jianxiang Zhang, Kai Feng, Meghan Cuddihy, Nicholas A Kotov, Peter X Ma

Affiliations

  1. Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA.

PMID: 20657806 PMCID: PMC2907537 DOI: 10.1039/c000898b

Abstract

We report the construction of novel temperature-responsive assemblies based on a double hydrophilic block copolymer (consisting of a PEG block and a β-cyclodextrin-containing block, PEG-b-PCD) and poly(N-isopropylacrylamide) (PNIPAm). Thus formed nano-assemblies exhibit a spherical morphology and have a temperature-responsive loose core. The driving force for the formation of these assemblies was found to be the inclusion complexation interaction between the hydrophobic cavity of β-cyclodextrin and the isopropyl group of PNIPAm. The particle size of these assemblies changed reversibly in response to the external temperature change. The particle size also changed with the PNIPAm/PEG-b-PCD weight ratio. A model hydrophobic drug (indomethacin) was loaded into these assemblies with a high efficiency. An in vitro release study showed that the payload could be released in a sustained manner after an initial burst release. The release rate could be switched between high and low in an ON/OFF fashion by temperature. These results demonstrate that the nano-assemblies have high potential for applications in controlled drug delivery and biomedicine when temperature responsiveness is desired.

References

  1. Angew Chem Int Ed Engl. 2006 Jun 26;45(26):4361-5 - PubMed
  2. Nat Rev Drug Discov. 2004 Dec;3(12):1023-35 - PubMed
  3. J Control Release. 1998 Apr 30;53(1-3):119-30 - PubMed
  4. J Am Chem Soc. 2006 May 3;128(17):5728-34 - PubMed
  5. J Control Release. 2006 Oct 10;115(2):208-15 - PubMed
  6. Angew Chem Int Ed Engl. 2006 Sep 18;45(37):6173-6 - PubMed
  7. J Control Release. 2006 Dec 1;116(3):322-9 - PubMed
  8. Nat Nanotechnol. 2006 Dec;1(3):195-200 - PubMed
  9. Angew Chem Int Ed Engl. 2007;46(27):5144-7 - PubMed
  10. J Nanosci Nanotechnol. 2007 Mar;7(3):1028-33 - PubMed
  11. J Control Release. 2000 Mar 1;65(1-2):93-103 - PubMed
  12. Eur J Pharm Biopharm. 2006 Jan;62(1):110-6 - PubMed
  13. J Control Release. 2000 Oct 3;69(1):127-37 - PubMed
  14. J Pharm Sci. 2006 Sep;95(9):1909-17 - PubMed
  15. Prog Polym Sci. 2007 Aug 1;32(8-9):838-857 - PubMed
  16. J Am Chem Soc. 2006 Mar 29;128(12):3852-3 - PubMed
  17. ChemMedChem. 2006 Apr;1(4):439-44 - PubMed
  18. Angew Chem Int Ed Engl. 2005 Sep 5;44(35):5658-61 - PubMed
  19. ACS Nano. 2008 Jan;2(1):125-33 - PubMed
  20. Biomaterials. 2006 Mar;27(9):2028-34 - PubMed
  21. Angew Chem Int Ed Engl. 2008;47(13):2418-21 - PubMed
  22. J Am Chem Soc. 2005 Jul 20;127(28):9952-3 - PubMed
  23. Angew Chem Int Ed Engl. 2007;46(14):2453-7 - PubMed
  24. J Am Chem Soc. 2005 Feb 16;127(6):1624-5 - PubMed
  25. Angew Chem Int Ed Engl. 2007;46(16):2823-6 - PubMed
  26. J Am Chem Soc. 2006 Mar 22;128(11):3703-8 - PubMed
  27. Pharm Res. 2007 Oct;24(10):1944-53 - PubMed
  28. Langmuir. 2004 Jul 20;20(15):6100-6 - PubMed
  29. J Am Chem Soc. 2002 Apr 10;124(14):3787-93 - PubMed
  30. J Control Release. 2002 Aug 21;82(2-3):189-212 - PubMed
  31. Small. 2006 Jul;2(7):917-23 - PubMed
  32. Angew Chem Int Ed Engl. 2003 Oct 6;42(38):4640-3 - PubMed
  33. Angew Chem Int Ed Engl. 2009;48(5):964-8 - PubMed
  34. J Control Release. 1999 Nov 1;62(1-2):115-27 - PubMed
  35. Nat Rev Drug Discov. 2005 Feb;4(2):145-60 - PubMed

Publication Types

Grant support