Display options
Share it on

Nanotechnology. 2010 Oct 15;21(41):415604. doi: 10.1088/0957-4484/21/41/415604. Epub 2010 Sep 16.

The structure and growth mechanism of Si nanoneedles prepared by plasma-enhanced chemical vapor deposition.

Nanotechnology

J Cervenka, M Ledinský, J Stuchlík, H Stuchlíková, S Bakardjieva, K Hruska, A Fejfar, J Kocka

Affiliations

  1. Institute of Physics, Academy of Sciences of the Czech Republic, v v i, Prague, Czech Republic.

PMID: 20844323 DOI: 10.1088/0957-4484/21/41/415604

Abstract

Silicon nanowires and nanoneedles show promise for many device applications in nanoelectronics and nanophotonics, but the remaining challenge is to grow them at low temperatures on low-cost materials. Here we present plasma-enhanced chemical vapor deposition of crystalline/amorphous Si nanoneedles on glass at temperatures as low as 250 °C. High resolution electron microscopy and micro-Raman spectroscopy have been used to study the crystal structure and the growth mechanism of individual Si nanoneedles. The H(2) dilution of the SiH(4) plasma working gas has caused the formation of extremely sharp nanoneedle tips that in some cases do not contain a catalytic particle at the end.

Publication Types