Display options
Share it on

Front Neurosci. 2010 Sep 15;4. doi: 10.3389/fnins.2010.00029. eCollection 2010.

Two-photon microscopy with diffractive optical elements and spatial light modulators.

Frontiers in neuroscience

Brendon O Watson, Volodymyr Nikolenko, Roberto Araya, Darcy S Peterka, Alan Woodruff, Rafael Yuste

Affiliations

  1. Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University New York, NY, USA.

PMID: 20859526 PMCID: PMC2940544 DOI: 10.3389/fnins.2010.00029

Abstract

Two-photon microscopy is often performed at slow frame rates due to the need to serially scan all points in a field of view with a single laser beam. To overcome this problem, we have developed two optical methods that split and multiplex a laser beam across the sample. In the first method a diffractive optical element (DOE) generates a fixed number of beamlets that are scanned in parallel resulting in a corresponding increase in speed or in signal-to-noise ratio in time-lapse measurements. The second method uses a computer-controlled spatial light modulator (SLM) to generate any arbitrary spatio-temporal light pattern. With an SLM one can image or photostimulate any predefined region of the image such as neurons or dendritic spines. In addition, SLMs can be used to mimic a large number of optical transfer functions including light path corrections as adaptive optics.

Keywords: calcium imaging; diffractive optical element; imaging; spatial light modulator; two-photon microscopy

References

  1. Front Neural Circuits. 2009 Jul 06;3:6 - PubMed
  2. J Neurosci Methods. 1994 Oct;54(2):151-62 - PubMed
  3. Opt Lett. 2003 Oct 15;28(20):1918-20 - PubMed
  4. J Cell Biol. 1987 Jul;105(1):41-8 - PubMed
  5. Curr Opin Neurobiol. 2009 Oct;19(5):520-9 - PubMed
  6. J Neurosci Methods. 2008 Jul 30;172(2):178-84 - PubMed
  7. J Biol Chem. 1985 Mar 25;260(6):3440-50 - PubMed
  8. Neuron. 1991 Mar;6(3):333-44 - PubMed
  9. Nat Methods. 2007 Nov;4(11):943-50 - PubMed
  10. Nat Methods. 2008 Sep;5(9):821-7 - PubMed
  11. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6629-33 - PubMed
  12. Front Neural Circuits. 2009 May 27;3:2 - PubMed
  13. Nature. 1981 Apr 9;290(5806):527-8 - PubMed
  14. Front Neural Circuits. 2008 Dec 19;2:5 - PubMed
  15. Nano Lett. 2007 Dec;7(12):3859-63 - PubMed
  16. Front Neural Circuits. 2008 Aug 13;2:2 - PubMed
  17. J Neurosci Methods. 2008 Aug 30;173(2):259-70 - PubMed
  18. J Microsc. 2001 Mar;201(Pt 3):368-76 - PubMed
  19. Nat Methods. 2008 Feb;5(2):197-202 - PubMed
  20. Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18799-804 - PubMed
  21. Science. 2004 Apr 23;304(5670):559-64 - PubMed
  22. Nat Methods. 2007 Jan;4(1):73-9 - PubMed
  23. J Microsc. 1990 Jan;157(Pt 1):29-38 - PubMed
  24. Science. 1990 Apr 6;248(4951):73-6 - PubMed
  25. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15049-54 - PubMed
  26. Science. 1967 Jul 21;157(3786):305-7 - PubMed
  27. J Neurosci Methods. 2006 Mar 15;151(2):276-86 - PubMed
  28. Nat Neurosci. 2001 Nov;4(11):1086-92 - PubMed
  29. Cold Spring Harb Protoc. 2009 Jun;2009(6):pdb.prot5231 - PubMed
  30. Methods. 1999 Jun;18(2):215-21 - PubMed
  31. Opt Express. 2005 Mar 7;13(5):1468-76 - PubMed
  32. J Neurophysiol. 2007 Dec;98(6):3770-9 - PubMed
  33. Curr Opin Neurobiol. 2006 Oct;16(5):543-50 - PubMed

Publication Types