Display options
Share it on

Front Neuroenergetics. 2010 Oct 12;2:131. doi: 10.3389/fnene.2010.00131. eCollection 2010.

Microglia in close vicinity of glioma cells: correlation between phenotype and metabolic alterations.

Frontiers in neuroenergetics

Pierre Voisin, Véronique Bouchaud, Michel Merle, Philippe Diolez, Laura Duffy, Kristian Flint, Jean-Michel Franconi, Anne-Karine Bouzier-Sore

Affiliations

  1. RMSB Center, Centre National de la Recherche Scientifique/Université Victor Segalen Bordeaux 2 Bordeaux, France.

PMID: 21031160 PMCID: PMC2965014 DOI: 10.3389/fnene.2010.00131

Abstract

Microglia are immune cells within the central nervous system. In brain-developing tumors, gliomas are able to silence the defense and immune functions of microglia, a phenomenon which strongly contributes to tumor progression and treatment resistance. Being activated and highly motile, microglia infiltrate tumors and secrete macrophagic chemoattractant factors. Thereafter, the tumor cells shut down their immune properties and stimulate the microglia to release tumor growth-promoting factors. The result of such modulation is that a kind of symbiosis occurs between microglia and tumor cells, in favor of tumor growth. However, little is known about microglial phenotype and metabolic modifications in a tumoral environment. Co-cultures were performed using CHME5 microglia cells grown on collagen beads or on coverslips and placed on monolayer of C6 cells, limiting cell/cell contacts. Phagocytic behavior and expression of macrophagic and cytoskeleton markers were monitored. Respiratory properties and energetic metabolism were also studied with regard to the activated phenotype of microglia. In co-cultures, transitory modifications of microglial morphology and metabolism were observed linked to a concomitant transitory increase of phagocytic properties. Therefore, after 1 h of co-culture, microglia were activated but when longer in contact with tumor cells, phagocytic properties appear silenced. Like the behavior of the phenotype, microglial respiration showed a transitory readjustment although the mitochondria maintained their perinuclear relocation. Nevertheless, the energetic metabolism of the microglia was altered, suggesting a new energetic steady state. The results clearly indicate that like the depressed immune properties, the macrophagic and metabolic status of the microglia is quickly driven by the glioma environment, despite short initial phagocytic activation. Such findings question the possible contribution of diffusible tumor factors to the microglial metabolism.

Keywords: C6 cells; NMR spectroscopy; glioma; metabolism; microglia; phenotype

References

  1. Glia. 1993 Jan;7(1):34-40 - PubMed
  2. Cell Metab. 2006 Jul;4(1):13-24 - PubMed
  3. J Neurosci Res. 2005 Aug 1;81(3):447-55 - PubMed
  4. Brain Res. 1996 Nov 11;739(1-2):215-34 - PubMed
  5. Immunol Today. 1992 Mar;13(3):86-9 - PubMed
  6. Eur J Cell Biol. 1996 Dec;71(4):356-62 - PubMed
  7. Expert Rev Anticancer Ther. 2005 Oct;5(5):777-90 - PubMed
  8. J Neurochem. 1997 Aug;69(2):581-93 - PubMed
  9. Neurochem Res. 1998 Mar;23(3):427-34 - PubMed
  10. J Cell Physiol. 1992 Oct;153(1):44-52 - PubMed
  11. Glia. 2000 Sep;31(3):262-6 - PubMed
  12. Methods Enzymol. 1979;56:530-44 - PubMed
  13. Curr Opin Investig Drugs. 2005 Nov;6(11):1116-23 - PubMed
  14. Ann Neurol. 1991 Feb;29(2):152-61 - PubMed
  15. Brain Dev. 1996 Sep-Oct;18(5):369-75 - PubMed
  16. Eur J Immunol. 1999 Apr;29(4):1275-85 - PubMed
  17. Eur J Biochem. 1991 Jan 1;195(1):87-95 - PubMed
  18. Neurochem Int. 1998 Jul;33(1):61-73 - PubMed
  19. Dev Neurosci. 1998;20(4-5):331-8 - PubMed
  20. J Neurosurg. 1979 Mar;50(3):305-11 - PubMed
  21. Biochimie. 1996;78(3):155-64 - PubMed
  22. J Bioenerg Biomembr. 1998 Dec;30(6):565-78 - PubMed
  23. Nat Med. 2000 May;6(5):493-5 - PubMed
  24. NMR Biomed. 2002 Feb;15(1):18-27 - PubMed
  25. Glia. 2002 Nov;40(2):252-9 - PubMed
  26. Glia. 2001 Jan;33(1):87-95 - PubMed
  27. Immunomethods. 1994 Apr;4(2):179-87 - PubMed
  28. Cell Biochem Funct. 1999 Sep;17(3):175-82 - PubMed
  29. Eur J Neurosci. 2001 Feb;13(3):529-38 - PubMed
  30. Eur J Immunol. 1985 Aug;15(8):809-14 - PubMed
  31. Trends Neurosci. 2000 Apr;23(4):166-74 - PubMed
  32. J Neurosurg. 2000 Oct;93(4):634-9 - PubMed
  33. J Neurosurg. 1998 Jun;88(6):1058-65 - PubMed
  34. Clin Neurol Neurosurg. 1999 Dec;101(4):229-34 - PubMed
  35. Glia. 2002 Nov;40(2):140-55 - PubMed
  36. Microsc Res Tech. 2001 Feb 15;52(4):401-10 - PubMed
  37. Neuroscience. 1996 May;72(2):377-89 - PubMed
  38. J Bioenerg Biomembr. 2003 Oct;35(5):439-50 - PubMed
  39. J Neurosurg. 1996 Oct;85(4):642-7 - PubMed
  40. Biochem Biophys Res Commun. 1989 Oct 16;164(1):185-90 - PubMed
  41. J Immunol. 1990 Mar 15;144(6):2233-41 - PubMed
  42. Nat Rev Immunol. 2003 Jan;3(1):23-35 - PubMed
  43. Biochim Biophys Acta. 1998 Sep 16;1404(3):393-404 - PubMed
  44. J Comput Assist Tomogr. 1988 Nov-Dec;12(6):907-16 - PubMed
  45. J Neuropathol Exp Neurol. 1987 Jul;46(4):419-30 - PubMed
  46. Glia. 2005 Sep;51(4):279-85 - PubMed
  47. FEBS Lett. 1996 Jan 8;378(2):107-10 - PubMed
  48. Immunology. 1994 Sep;83(1):140-7 - PubMed
  49. Invest Radiol. 1995 Jun;30(6):359-66 - PubMed
  50. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10625-9 - PubMed
  51. Neurochem Int. 2000 Mar;36(3):233-41 - PubMed
  52. Cancer Res. 1990 Oct 15;50(20):6683-8 - PubMed
  53. Oncogene. 2008 Feb 7;27(7):918-30 - PubMed
  54. Neurosci Lett. 2000 Apr 14;283(3):177-80 - PubMed
  55. Cancer Gene Ther. 2006 Apr;13(4):357-66 - PubMed
  56. J Neurosci Res. 1990 Jul;26(3):278-87 - PubMed
  57. Cell. 2003 Mar 7;112(5):645-57 - PubMed
  58. Adv Exp Med Biol. 1989;248:847-53 - PubMed
  59. NMR Biomed. 2001 Aug;14(5):307-17 - PubMed
  60. Biopolymers. 2001;62(6):297-306 - PubMed
  61. Int J Dev Neurosci. 1999 Aug-Oct;17(5-6):547-56 - PubMed
  62. J Neurosci Res. 1994 Jul 1;38(4):365-75 - PubMed
  63. Am J Physiol. 1977 Dec;233(6):E457-61 - PubMed
  64. NMR Biomed. 1992 Sep-Oct;5(5):226-33 - PubMed
  65. Cell Metab. 2006 Jul;4(1):7-8 - PubMed
  66. Res Virol. 1991 Mar-Jun;142(2-3):145-9 - PubMed
  67. Cytotechnology. 1990 Mar;3(2):179-88 - PubMed
  68. Ann Neurol. 1984 Nov;16(5):581-6 - PubMed
  69. Glia. 1996 Jan;16(1):81-90 - PubMed
  70. Acta Neuropathol. 1992;84(5):538-44 - PubMed
  71. J Biol Chem. 1998 Oct 16;273(42):27162-9 - PubMed
  72. Brain Res. 2008 Jan 10;1188:17-24 - PubMed
  73. Cytometry. 1988 May;9(3):206-12 - PubMed
  74. Microsc Res Tech. 2001 Jul 15;54(2):106-13 - PubMed
  75. Res Immunol. 1998 Sep-Oct;149(7-8):727-32 - PubMed
  76. Neurochem Int. 1994 Sep;25(3):227-33 - PubMed
  77. Glia. 2001 Nov;36(2):165-79 - PubMed
  78. Dev Neurosci. 1994;16(3-4):128-36 - PubMed
  79. Biochimie. 1992 Sep-Oct;74(9-10):919-30 - PubMed
  80. Cell. 1986 Apr 11;45(1):3-13 - PubMed

Publication Types