Display options
Share it on

J Cell Death. 2010 Mar 03;3:1-11. doi: 10.4137/jcd.s2822.

Interferon-γ Regulates the Death of M. tuberculosis-Infected Macrophages.

Journal of cell death

Jinhee Lee, Hardy Kornfeld

Affiliations

  1. Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655. [email protected].

PMID: 21072140 PMCID: PMC2975577 DOI: 10.4137/jcd.s2822

Abstract

We previously described a caspase-independent death induced in macrophages by a high intracellular burden of Mycobacterium tuberculosis (Mtb). This death, with features of apoptosis and necrosis, releases viable bacilli for spreading infection. Interferon (IFN)-γ promotes survival of macrophages with a low intracellular Mtb load by inhibiting bacterial replication. Macrophages in naïve hosts are unable to restrict Mtb replication following aerosol transmission, but IFN-γ is increasingly present when adaptive immunity is expressed in the lungs ~2 weeks post-infection. We therefore investigated the effects of IFN-γ on macrophages challenged with Mtb at high multiplicity of infection (MOI). In contrast to the response at low MOI, IFN-γ accelerated the death of heavily infected macrophages and altered the characteristics of the dying cells. IFN-γ increased caspase-dependent DNA cleavage and apoptotic vesicle formation, but it also increased mitochondrial injury and release of LDH and HMGB1 in a caspase-independent manner. Adaptive immunity in tuberculosis (TB), mediated primarily by IFN-γ, has differential effects on Mtb-induced macrophage cell death depending on the intracellular bacillary load. While IFN-γ generally promotes host defense, our data suggest that its effects on heavily infected macrophages could also accelerate necrosis and spreading infection in TB disease.

References

  1. J Biol Chem. 2004 May 7;279(19):19712-20 - PubMed
  2. Nature. 2005 Apr 7;434(7034):767-72 - PubMed
  3. J Immunol. 2001 Apr 1;166(7):4604-11 - PubMed
  4. J Interferon Cytokine Res. 2002 Jan;22(1):5-14 - PubMed
  5. J Clin Invest. 2007 Aug;117(8):2279-88 - PubMed
  6. J Leukoc Biol. 2006 Jan;79(1):80-6 - PubMed
  7. J Immunol. 2000 Feb 15;164(4):2016-20 - PubMed
  8. Science. 1998 Aug 28;281(5381):1309-12 - PubMed
  9. Cell. 1994 Jun 17;77(6):829-39 - PubMed
  10. J Immunol. 2006 Apr 1;176(7):4267-74 - PubMed
  11. J Infect Dis. 2000 Jan;181(1):379-84 - PubMed
  12. Immunity. 2008 Jul 18;29(1):21-32 - PubMed
  13. Cell. 2009 Jan 9;136(1):37-49 - PubMed
  14. J Immunol. 1998 Jun 1;160(11):5448-54 - PubMed
  15. Nat Med. 2003 Aug;9(8):1039-46 - PubMed
  16. Leukemia. 1997 Apr;11 Suppl 3:439-40 - PubMed
  17. Nat Rev Immunol. 2009 May;9(5):353-63 - PubMed
  18. Infect Immun. 2008 Aug;76(8):3464-72 - PubMed
  19. Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6674-9 - PubMed
  20. Nat Rev Immunol. 2005 Apr;5(4):331-42 - PubMed
  21. Infect Immun. 1997 Jan;65(1):298-304 - PubMed
  22. J Immunol. 1986 Apr 1;136(7):2441-4 - PubMed
  23. Infect Immun. 2003 Jan;71(1):254-9 - PubMed
  24. J Clin Invest. 1997 Dec 1;100(11):2658-64 - PubMed
  25. J Exp Med. 1993 Dec 1;178(6):2249-54 - PubMed
  26. Int J Cancer. 2002 Aug 1;100(4):445-51 - PubMed
  27. J Leukoc Biol. 2004 Feb;75(2):163-89 - PubMed
  28. J Exp Med. 1993 Dec 1;178(6):2243-7 - PubMed
  29. Immunity. 2006 Jan;24(1):105-17 - PubMed
  30. J Interferon Cytokine Res. 2007 May;27(5):353-64 - PubMed
  31. Yonsei Med J. 2009 Feb 28;50(1):1-11 - PubMed
  32. Mol Cell Biol. 1997 Sep;17(9):5328-37 - PubMed
  33. J Clin Invest. 1998 Jun 1;101(11):2364-9 - PubMed
  34. Cell Microbiol. 2008 Jun;10(6):1390-404 - PubMed
  35. Am J Physiol Cell Physiol. 2006 Dec;291(6):C1318-25 - PubMed
  36. J Exp Med. 2001 Oct 15;194(8):1123-40 - PubMed
  37. Nature. 2002 Jul 11;418(6894):191-5 - PubMed
  38. Tuberculosis (Edinb). 2004;84(1-2):93-101 - PubMed

Publication Types

Grant support