Display options
Share it on

Nat Commun. 2011 Jan 25;2:163. doi: 10.1038/ncomms1167.

Ancient origins determine global biogeography of hot and cold desert cyanobacteria.

Nature communications

Justin Bahl, Maggie C Y Lau, Gavin J D Smith, Dhanasekaran Vijaykrishna, S Craig Cary, Donnabella C Lacap, Charles K Lee, R Thane Papke, Kimberley A Warren-Rhodes, Fiona K Y Wong, Christopher P McKay, Stephen B Pointing

Affiliations

  1. Duke-NUS Graduate Medical School, Singapore 169857.

PMID: 21266963 PMCID: PMC3105302 DOI: 10.1038/ncomms1167

Abstract

Factors governing large-scale spatio-temporal distribution of microorganisms remain unresolved, yet are pivotal to understanding ecosystem value and function. Molecular genetic analyses have focused on the influence of niche and neutral processes in determining spatial patterns without considering the temporal scale. Here, we use temporal phylogenetic analysis calibrated using microfossil data for a globally sampled desert cyanobacterium, Chroococcidiopsis, to investigate spatio-temporal patterns in microbial biogeography and evolution. Multilocus phylogenetic associations were dependent on contemporary climate with no evidence for distance-related patterns. Massively parallel pyrosequencing of environmental samples confirmed that Chroococcidiopsis variants were specific to either hot or cold deserts. Temporally scaled phylogenetic analyses showed no evidence of recent inter-regional gene flow, indicating populations have not shared common ancestry since before the formation of modern continents. These results indicate that global distribution of desert cyanobacteria has not resulted from widespread contemporary dispersal but is an ancient evolutionary legacy. This highlights the importance of considering temporal scales in microbial biogeography.

References

  1. Appl Environ Microbiol. 1997 Aug;63(8):3327-32 - PubMed
  2. Appl Environ Microbiol. 2005 Mar;71(3):1501-6 - PubMed
  3. Science. 2006 Jun 16;312(5780):1621 - PubMed
  4. BMC Bioinformatics. 2008 Sep 19;9:386 - PubMed
  5. PLoS Biol. 2006 May;4(5):e88 - PubMed
  6. Nature. 2004 Sep 23;431(7007):414 - PubMed
  7. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19964-9 - PubMed
  8. Trends Ecol Evol. 2006 Nov;21(11):638-44 - PubMed
  9. Nat Rev Microbiol. 2007 May;5(5):384-92 - PubMed
  10. Mol Biol Evol. 2007 Aug;24(8):1596-9 - PubMed
  11. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5442-7 - PubMed
  12. Nat Methods. 2009 Sep;6(9):639-41 - PubMed
  13. Environ Microbiol. 2008 Jul;10(7):1681-9 - PubMed
  14. Appl Environ Microbiol. 2000 Apr;66(4):1489-92 - PubMed
  15. ISME J. 2010 Jun;4(6):777-83 - PubMed
  16. Biol Rev Camb Philos Soc. 2008 May;83(2):103-17 - PubMed
  17. Mol Biol Evol. 2008 Jul;25(7):1459-71 - PubMed
  18. ISME J. 2010 Nov;4(11):1357-65 - PubMed
  19. Microb Ecol. 2006 Oct;52(3):389-98 - PubMed
  20. Appl Environ Microbiol. 2007 Jul;73(14):4532-42 - PubMed
  21. Biol Direct. 2009 Sep 29;4:35 - PubMed
  22. Science. 2003 Aug 15;301(5635):976-8 - PubMed
  23. Evol Bioinform Online. 2007 Feb 23;1:47-50 - PubMed
  24. BMC Evol Biol. 2007 Nov 08;7:214 - PubMed
  25. Nat Rev Microbiol. 2006 Feb;4(2):102-12 - PubMed
  26. Nature. 2005 Aug 25;436(7054):1157-60 - PubMed
  27. Bioinformatics. 1998;14(9):817-8 - PubMed
  28. Environ Microbiol. 2003 Aug;5(8):650-9 - PubMed
  29. Nature. 2006 Jun 1;441(7093):601-5 - PubMed
  30. Mol Phylogenet Evol. 2002 Apr;23(1):82-90 - PubMed
  31. Trends Ecol Evol. 2006 Sep;21(9):501-7 - PubMed
  32. Science. 1987 Jul 3;237:70-3 - PubMed
  33. Appl Environ Microbiol. 2000 Dec;66(12):5448-56 - PubMed
  34. Nature. 2006 Feb 9;439(7077):677-81 - PubMed

Publication Types