Display options
Share it on

Front Zool. 2011 Feb 08;8(1):2. doi: 10.1186/1742-9994-8-2.

Integrative taxonomy: Combining morphological, molecular and chemical data for species delineation in the parthenogenetic Trhypochthonius tectorum complex (Acari, Oribatida, Trhypochthoniidae).

Frontiers in zoology

Michael Heethoff, Michael Laumann, Gerd Weigmann, Günther Raspotnig

Affiliations

  1. Institute of Zoology, Karl-Franzens University Graz, Universitätsplatz 2, 8010 Graz, Austria. [email protected].

PMID: 21303503 PMCID: PMC3045314 DOI: 10.1186/1742-9994-8-2

Abstract

BACKGROUND: There is a long-standing controversial about how parthenogenetic species can be defined in absence of a generally accepted species concept for this reproductive mode. An integrative approach was suggested, combining molecular and morphological data to identify distinct monophyletic entities. Using this approach, speciation of parthenogenetic lineages was recently demonstrated for groups of bdelloid rotifers and oribatid mites. Trhypochthonius tectorum, an oribatid mite from the entirely parthenogenetic desmonomatan family Trhypochthoniidae, is traditionally treated as a single species in Central Europe. However, two new morphological lineages were recently proposed for some Austrian populations of T. tectorum, and were described as novel subspecies (T. silvestris europaeus) or form (T. japonicus forma occidentalis). We used the morphological and morphometrical data which led to this separation, and added mitochondrial and nuclear DNA sequences and the chemical composition of complex exocrine oil gland secretions to test this taxonomical hypothesis. This is the first attempt to combine these three types of data for integrative taxonomical investigations of oribatid mites.

RESULTS: We show that the previous European species T. tectorum represents a species complex consisting of three distinct lineages in Austria (T.tectorum, T. silvestris europaeus and T. japonicus forma occidentalis), each clearly separated by morphology, oil gland secretion profiles and mitochondrial cox1 sequences. This diversification happened in the last ten million years. In contrast to these results, no variation among the lineages was found in the nuclear 18S rDNA.

CONCLUSIONS: Our approach combined morphological, molecular and chemical data to investigate diversity and species delineation in a parthenogenetic oribatid mite species complex. To date, hypotheses of a general oribatid mite phylogeny are manifold, and mostly based on single-method approaches. Probably, the integrative approach proposed here can be used to uncover further hidden biodiversity of glandulate Oribatida and help to build up more stable phylogenetic hypotheses in the future.

References

  1. Mol Ecol. 2002 Jan;11(1):79-89 - PubMed
  2. J Mol Evol. 1985;22(2):160-74 - PubMed
  3. Heredity (Edinb). 2004 Aug;93(2):154-60 - PubMed
  4. PLoS One. 2010 May 13;5(5):e10609 - PubMed
  5. PLoS Biol. 2007 Apr;5(4):e87 - PubMed
  6. J Evol Biol. 2007 Jan;20(1):392-402 - PubMed
  7. Mol Phylogenet Evol. 2010 Oct;57(1):113-21 - PubMed
  8. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8885-90 - PubMed
  9. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7139-44 - PubMed
  10. Science. 1984 May 4;224(4648):492-4 - PubMed
  11. Exp Appl Acarol. 2003;29(3-4):279-91 - PubMed
  12. Mol Biol Evol. 2007 Aug;24(8):1596-9 - PubMed
  13. J Evol Biol. 2006 Jan;19(1):184-93 - PubMed
  14. Annu Rev Entomol. 2010;55:421-38 - PubMed
  15. BMC Genomics. 2008 Nov 07;9:532 - PubMed
  16. J Hered. 1993 Sep-Oct;84(5):372-87 - PubMed
  17. Exp Appl Acarol. 2001;25(12):933-46 - PubMed
  18. Exp Appl Acarol. 2003;29(3-4):265-77 - PubMed
  19. Evolution. 2003 Sep;57(9):2166-72 - PubMed
  20. Syst Biol. 2005 Dec;54(6):952-61 - PubMed
  21. Front Zool. 2010 May 25;7:16 - PubMed
  22. Heredity (Edinb). 1998 Jun;80 ( Pt 6):742-52 - PubMed
  23. Proc Biol Sci. 2003 Feb 7;270(1512):313-21 - PubMed
  24. Syst Biol. 2006 Aug;55(4):595-609 - PubMed
  25. Syst Biol. 2005 Oct;54(5):844-51 - PubMed
  26. J Hered. 2006 Nov-Dec;97(6):581-94 - PubMed
  27. Mol Phylogenet Evol. 2009 Oct;53(1):182-9 - PubMed
  28. Mol Phylogenet Evol. 2010 Jan;54(1):59-75 - PubMed
  29. Bioinformatics. 1998;14(9):817-8 - PubMed
  30. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  31. Exp Appl Acarol. 2004;33(3):183-201 - PubMed
  32. J Evol Biol. 2008 Mar;21(2):580-7 - PubMed
  33. Mol Phylogenet Evol. 2005 Sep;36(3):554-67 - PubMed
  34. PLoS Biol. 2004 Oct;2(10):e312 - PubMed
  35. Genetics. 1993 Oct;135(2):599-607 - PubMed
  36. Nat Rev Genet. 2002 Apr;3(4):311-7 - PubMed

Publication Types

Grant support