Display options
Share it on

Biol Proced Online. 2010 Mar 03;12(1):9026. doi: 10.1007/s12575-010-9026-8.

Collection of epithelial cells from rodent mammary gland via laser capture microdissection yielding high-quality RNA suitable for microarray analysis.

Biological procedures online

John N McGinley, Zongjian Zhu, Weiqin Jiang, Henry J Thompson

Affiliations

  1. Cancer Prevention Laboratory, Colorado State University, 1173 Campus Delivery, Fort Collins, CO 80523, USA. [email protected].

PMID: 21406068 PMCID: PMC3055717 DOI: 10.1007/s12575-010-9026-8

Abstract

Laser capture microdissection (LCM) enables collection of cell populations highly enriched for specific cell types that have the potential of yielding critical information about physiological and pathophysiological processes. One use of cells collected by LCM is for gene expression profiling. Samples intended for transcript analyses should be of the highest quality possible. RNA degradation is an ever-present concern in molecular biological assays, and LCM is no exception. This paper identifies issues related to preparation, collection, and processing in a lipid-rich tissue, rodent mammary gland, in which the epithelial to stromal cell ratio is low and the stromal component is primarily adipocytes, a situation that presents numerous technical challenges for high-quality RNA isolation. Our goal was to improve the procedure so that a greater probe set present call rate would be obtained when isolated RNA was evaluated using Affymetrix microarrays. The results showed that the quality of RNA isolated from epithelial cells of both mammary gland and mammary adenocarcinomas was high with a probe set present call rate of 65% and a high signal-to-noise ratio.

References

  1. Biotechniques. 2002 Jul;33(1):176-9 - PubMed
  2. Cancer Res. 2007 Dec 15;67(24):12018-25 - PubMed
  3. Am J Pathol. 2003 Mar;162(3):755-62 - PubMed
  4. Nucleic Acids Res. 1999 Nov 15;27(22):4436-43 - PubMed
  5. J Neurosci Methods. 2006 May 15;153(1):71-85 - PubMed
  6. Trends Genet. 1998 Jul;14(7):272-6 - PubMed
  7. Prog Histochem Cytochem. 2008;42(4):173-201 - PubMed
  8. Science. 1995 Oct 20;270(5235):467-70 - PubMed
  9. IEEE Trans Nanobioscience. 2008 Jun;7(2):142-53 - PubMed
  10. Bioinformatics. 2007 Feb 1;23(3):321-7 - PubMed
  11. J Neurosci Methods. 2007 Sep 30;165(2):198-209 - PubMed
  12. J Cell Physiol. 2004 Dec;201(3):366-73 - PubMed
  13. Am J Pathol. 2002 Dec;161(6):1961-71 - PubMed
  14. Exp Mol Pathol. 2006 Apr;80(2):183-91 - PubMed
  15. Int J Clin Exp Pathol. 2008 Mar 15;1(6):475-88 - PubMed
  16. Am J Pathol. 2001 Feb;158(2):419-29 - PubMed
  17. Mol Carcinog. 1999 Jun;25(2):86-91 - PubMed
  18. Carcinogenesis. 1995 Oct;16(10):2407-11 - PubMed
  19. Am J Physiol Cell Physiol. 2005 May;288(5):C1179-89 - PubMed
  20. Mol Biosyst. 2008 Jul;4(7):726-32 - PubMed
  21. Int J Oncol. 2007 Aug;31(2):253-60 - PubMed
  22. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10614-9 - PubMed
  23. Stat Appl Genet Mol Biol. 2006;5:Article24 - PubMed
  24. BMC Genomics. 2006 Apr 27;7:97 - PubMed
  25. Lab Invest. 2003 Oct;83(10):1427-35 - PubMed
  26. Methods Mol Biol. 2008;424:433-48 - PubMed
  27. Nat Protoc. 2006;1(2):586-603 - PubMed
  28. Curr Issues Mol Biol. 2003 Apr;5(2):27-35 - PubMed

Publication Types