Display options
Share it on

J Magn Reson. 2011 May;210(1):69-74. doi: 10.1016/j.jmr.2011.02.014. Epub 2011 Feb 17.

Low-frequency NMR with a non-resonant circuit.

Journal of magnetic resonance (San Diego, Calif. : 1997)

Timothy Hopper, Soumyajit Mandal, David Cory, Martin Hürlimann, Yi-Qiao Song

Affiliations

  1. Schlumberger-Doll Research, Cambridge, MA 02169, USA.

PMID: 21382732 DOI: 10.1016/j.jmr.2011.02.014

Abstract

Nuclear magnetic resonance typically utilizes a tuned resonance circuit with impedance matching to transmit power and receive signal. The efficiency of such a tuned coil is often described in terms of the coil quality factor, Q. However, in field experiments such as in well-logging, the circuit Q can vary dramatically throughout the depth of the wellbore due to temperature or fluid salinity variations. Such variance can result in erroneous setting of NMR circuit parameters (tuning and matching) and subsequent errors in measurements. This paper investigates the use of a non-resonant transmitter to reduce the circuit sensitivity on Q and demonstrates that such circuits can be efficient in delivering power and current to the coil. We also describe a tuned receiver circuit whose resonant frequency can be controlled digitally. Experimental results show that a range of common NMR experiments can be performed with our circuits.

Copyright © 2011 Elsevier Inc. All rights reserved.

Publication Types