Display options
Share it on

Anal Chem. 2011 Mar 15;83(6):1955-9. doi: 10.1021/ac102648k. Epub 2011 Feb 14.

Interfacing capillary-based separations to mass spectrometry using desorption electrospray ionization.

Analytical chemistry

Griffin K Barbula, Samir Safi, Konstantin Chingin, Richard H Perry, Richard N Zare

Affiliations

  1. Department of Chemistry, Stanford University, Stanford, California 94305, United States.

PMID: 21319740 PMCID: PMC4172341 DOI: 10.1021/ac102648k

Abstract

The powerful hybrid analysis method of capillary-based separations followed by mass spectrometric analysis gives substantial chemical identity and structural information. It is usually carried out using electrospray ionization. However, the salts and detergents used in the mobile phase for electrokinetic separations suppress ionization efficiencies and contaminate the inlet of the mass spectrometer. This report describes a new method that uses desorption electrospray ionization (DESI) to overcome these limitations. Effluent from capillary columns is deposited on a rotating Teflon disk that is covered with paper. As the surface rotates, the temporal separation of the eluting analytes (i.e., the electropherogram) is spatially encoded on the surface. Then, using DESI, surface-deposited analytes are preferentially ionized, reducing the effects of ion suppression and inlet contamination on signal. With the use of this novel approach, two capillary-based separations were performed: a mixture of the rhodamine dyes at milligram/milliliter levels in a 10 mM sodium borate solution was separated by capillary electrophoresis, and a mixture of three cardiac drugs at milligram/milliliter levels in a 12.5 mM sodium borate and 12.5 mM sodium dodecyl sulfate solution was separated by micellar electrokinetic chromatography. In both experiments, the negative effects of detergents and salts on the MS analyses were minimized.

References

  1. Anal Chem. 1996 Sep 15;68(18):3265-9 - PubMed
  2. J Chromatogr A. 1995 May 12;700(1-2):173-8 - PubMed
  3. Anal Chem. 2005 Nov 1;77(21):6915-27 - PubMed
  4. J Mass Spectrom. 2010 Feb;45(2):223-6 - PubMed
  5. Anal Chem. 1996 Feb 15;68(4):668-74 - PubMed
  6. Anal Chem. 2000 Apr 15;72(8):1866-71 - PubMed
  7. Rapid Commun Mass Spectrom. 2005;19(24):3643-50 - PubMed
  8. J Am Soc Mass Spectrom. 2010 Aug;21(8):1423-31 - PubMed
  9. Anal Chem. 2000 Nov 1;72(21):5348-55 - PubMed
  10. Science. 2006 Mar 17;311(5767):1566-70 - PubMed
  11. Anal Chem. 2005 Nov 1;77(21):6755-64 - PubMed
  12. J Chromatogr A. 1999 Sep 24;856(1-2):443-63 - PubMed
  13. Rapid Commun Mass Spectrom. 2006;20(2):103-10 - PubMed
  14. Science. 1985 Nov 15;230(4727):813-4 - PubMed
  15. Anal Chem. 2009 Nov 1;81(21):9035-40 - PubMed
  16. Electrophoresis. 2000 Apr;21(7):1239-50 - PubMed
  17. Anal Biochem. 2000 Dec 1;287(1):45-54 - PubMed
  18. J Chromatogr A. 2003 Jun 6;1000(1-2):953-61 - PubMed
  19. Angew Chem Int Ed Engl. 2005 Nov 4;44(43):7094-7 - PubMed
  20. Anal Chem. 1997 May 15;69(10):1820-6 - PubMed
  21. J Am Soc Mass Spectrom. 2010 Apr;21(4):572-9 - PubMed
  22. Anal Chem. 2004 Oct 1;76(19):5968-73 - PubMed
  23. Science. 2004 Oct 15;306(5695):471-3 - PubMed
  24. J Am Soc Mass Spectrom. 2007 Dec;18(12):2218-25 - PubMed
  25. Science. 1983 Oct 21;222(4621):266-72 - PubMed
  26. Rapid Commun Mass Spectrom. 2008 Dec;22(23):3846-50 - PubMed
  27. Rapid Commun Mass Spectrom. 2001;15(16):1473-80 - PubMed
  28. Anal Chem. 2001 Apr 15;73(8):1670-5 - PubMed
  29. J Chromatogr A. 1993 Oct 22;652(2):369-76 - PubMed

Publication Types

Grant support