Display options
Share it on

Front Physiol. 2010 Oct 21;1:138. doi: 10.3389/fphys.2010.00138. eCollection 2010.

Pertussis toxin nullifies the depolarization of the membrane potential and the stimulation of the rapid phase of Ca entry through L-type calcium channels that are produced by follicle stimulating hormone in 10- to 12-day-old rat Sertoli cells.

Frontiers in physiology

Ana Paula Jacobus, Eloísa Silveira Loss, Guillermo Federico Wassermann

Affiliations

  1. Laboratório de Endocrinologia Experimental e Eletrofisiologia Endócrina, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Rio Grande do Sul, Brazil.

PMID: 21423378 PMCID: PMC3059968 DOI: 10.3389/fphys.2010.00138

Abstract

The aim of this study was to evaluate the effect of pertussis toxin (PTX) on the depolarizing component of the action of follicle stimulating hormone (FSH) on the membrane potential (MP) of Sertoli cells, which is linked to the rapid entry of Ca(2+) into cells and to the Ca(2+)-dependent transport of neutral amino acids by the A system. This model allowed us to analyze the involvement of Gi proteins in the action of FSH in these phenomena. In parallel, using an inactive analog of insulin-like growth factor type I (IGF-1), JB1, and an anti-IGF-I antibody we investigated the possible mediating role of IGF-I on these effects of FSH because IGF-I is produced and released by testicular cells in response to stimulation by FSH and shows depolarization effects on MP similar to those from FSH. Our results have the following implications: (a) the rapid membrane actions of FSH, which occur in a time-frame of seconds to minutes and include the depolarization of the MP, and stimulation of (45)Ca(2+) uptake and [(14)C]-methyl aminoisobutyric acid ([(14)C]-MeAIB) transport, are nullified by the action of PTX and, therefore, are probably mediated by GiPCR activation; (b) the effects of FSH were also nullified by verapamil, an L-type voltage-dependent Ca(2+) channel blocker; (c) wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K), prevented FSH stimulation of (45)Ca(2+) entry and [(14)C]-MeAIB transport; and (d) these FSH actions are independent of the IGF-I effects. In conclusion, these results strongly suggest that the rapid action of FSH on L-type Ca(2+) channel activity in Sertoli cells from 10- to 12-day-old rats is mediated by the Gi/βγ/PI3Kγ pathway, independent of the effects of IGF-I.

Keywords: Gi protein; L-type Ca2+ channels; Sertoli cell; follicle stimulating hormone; immature testes; membrane potential

References

  1. Pharmacol Rev. 2003 Dec;55(4):607-27 - PubMed
  2. J Endocrinol. 2004 Feb;180(2):257-65 - PubMed
  3. Reprod Biol. 2004 Nov;4(3):219-41 - PubMed
  4. J Biol Chem. 2000 Jan 28;275(4):2255-8 - PubMed
  5. Mol Endocrinol. 1997 Dec;11(13):2038-47 - PubMed
  6. Regul Pept. 1996 Apr 23;62(2-3):65-71 - PubMed
  7. Trends Pharmacol Sci. 2001 Jul;22(7):368-76 - PubMed
  8. Oncogene. 2001 Aug 2;20(34):4696-709 - PubMed
  9. Mol Cell Endocrinol. 2007 Jan 2;260-262:93-9 - PubMed
  10. Circ Res. 1999 Jan 8-22;84(1):43-52 - PubMed
  11. Cell Signal. 2006 Feb;18(2):135-50 - PubMed
  12. J Biol Chem. 1991 Dec 15;266(35):23739-44 - PubMed
  13. Braz J Med Biol Res. 1981 Apr;14(1):11-7 - PubMed
  14. Horm Metab Res. 2002 Oct;34(10):550-5 - PubMed
  15. Cell Signal. 2010 May;22(5):707-16 - PubMed
  16. Circ Res. 2004 Aug 6;95(3):300-7 - PubMed
  17. J Endocrinol. 1985 Sep;106(3):291-4 - PubMed
  18. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1076-83 - PubMed
  19. Biol Reprod. 2000 Jun;62(6):1835-43 - PubMed
  20. Horm Metab Res. 1985 May;17(5):237-40 - PubMed
  21. J Cell Biochem. 1997 Mar 1;64(3):414-22 - PubMed
  22. Biol Reprod. 1999 Aug;61(2):343-52 - PubMed
  23. J Endocrinol. 2007 Aug;194(2):243-56 - PubMed
  24. Horm Metab Res. 1992 Jul;24(7):326-8 - PubMed
  25. Eur J Endocrinol. 2002 Sep;147(3):425-33 - PubMed
  26. Endocrinology. 1994 Apr;134(4):1915-23 - PubMed
  27. Endocrinology. 2002 Jun;143(6):2259-67 - PubMed
  28. Semin Cell Dev Biol. 1998 Aug;9(4):411-6 - PubMed
  29. Endocrinology. 1992 Dec;131(6):2622-8 - PubMed
  30. Endocrinology. 1989 Dec;125(6):3029-36 - PubMed
  31. Horm Metab Res. 1992 Jun;24(6):276-9 - PubMed
  32. Mol Cell Endocrinol. 2006 Mar 9;247(1-2):73-81 - PubMed
  33. Endocrine. 2007 Dec;32(3):251-63 - PubMed
  34. Nature. 1997 Nov 6;390(6655):88-91 - PubMed
  35. J Exp Med. 2005 Apr 18;201(8):1217-28 - PubMed
  36. Endocrinology. 1990 Aug;127(2):949-56 - PubMed
  37. J Pharmacol Exp Ther. 1995 Jan;272(1):379-84 - PubMed
  38. J Endocrinol. 1974 Mar;60(3):463-71 - PubMed
  39. Science. 1998 May 22;280(5367):1271-4 - PubMed
  40. Horm Metab Res. 2007 Nov;39(11):806-12 - PubMed
  41. Nat Neurosci. 2004 Sep;7(9):939-46 - PubMed
  42. Reproduction. 2005 Jul;130(1):15-28 - PubMed
  43. Endocrinology. 1990 Apr;126(4):1867-72 - PubMed
  44. Endocrinology. 1988 Jun;122(6):2692-8 - PubMed
  45. J Mol Endocrinol. 1994 Oct;13(2):149-55 - PubMed
  46. Regul Pept. 1993 Dec 10;49(2):125-31 - PubMed
  47. Horm Metab Res. 2005 Apr;37(4):198-204 - PubMed
  48. Life Sci. 1983 Jan 24;32(4):315-9 - PubMed
  49. Endocrinology. 1994 Jan;134(1):293-300 - PubMed
  50. Eur J Biochem. 1999 Feb;259(3):801-8 - PubMed
  51. Mol Cell Endocrinol. 1994 Oct;105(1):111-8 - PubMed
  52. Physiol Rev. 2002 Oct;82(4):825-74 - PubMed
  53. Dev Biol. 1983 Nov;100(1):249-55 - PubMed
  54. Endocrinology. 2003 Dec;144(12):5585-94 - PubMed

Publication Types