Display options
Share it on

Biomed Opt Express. 2011 Apr 01;2(5):1040-58. doi: 10.1364/BOE.2.001040.

Quantitative principal component model for skin chromophore mapping using multi-spectral images and spatial priors.

Biomedical optics express

Jana M Kainerstorfer, Jason D Riley, Martin Ehler, Laleh Najafizadeh, Franck Amyot, Moinuddin Hassan, Randall Pursley, Stavros G Demos, Victor Chernomordik, Michael Pircher, Paul D Smith, Christoph K Hitzenberger, Amir H Gandjbakhche

PMID: 21559118 PMCID: PMC3087563 DOI: 10.1364/BOE.2.001040

Abstract

We describe a novel reconstruction algorithm based on Principal Component Analysis (PCA) applied to multi-spectral imaging data. Using numerical phantoms, based on a two layered skin model developed previously, we found analytical expressions, which convert qualitative PCA results into quantitative blood volume and oxygenation values, assuming the epidermal thickness to be known. We also evaluate the limits of accuracy of this method when the value of the epidermal thickness is not known. We show that blood volume can reliably be extracted (less than 6% error) even if the assumed thickness deviates 0.04mm from the actual value, whereas the error in blood oxygenation can be as large as 25% for the same deviation in thickness. This PCA based reconstruction was found to extract blood volume and blood oxygenation with less than 8% error, if the underlying structure is known. We then apply the method to in vivo multi-spectral images from a healthy volunteer's lower forearm, complemented by images of the same area using Optical Coherence Tomography (OCT) for measuring the epidermal thickness. Reconstruction of the imaging results using a two layered analytical skin model was compared to PCA based reconstruction results. A point wise correlation was found, showing the proof of principle of using PCA based reconstruction for blood volume and oxygenation extraction.

Keywords: (100.3010) Image reconstruction techniques; (170.6510) Spectroscopy, tissue diagnostics

References

  1. J Biomed Opt. 2002 Jul;7(3):329-40 - PubMed
  2. Dermatology. 2008;217(1):14-20 - PubMed
  3. Phys Med Biol. 2008 Feb 7;53(3):617-36 - PubMed
  4. J Med Eng Technol. 2009;33(2):101-9 - PubMed
  5. Surg Today. 2006;36(12):1075-84 - PubMed
  6. Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:3442-5 - PubMed
  7. Phys Med Biol. 2006 Mar 21;51(6):1479-89 - PubMed
  8. Br J Dermatol. 1973 Nov;89(5):467-76 - PubMed
  9. J Biomed Opt. 2008 Sep-Oct;13(5):054045 - PubMed
  10. Opt Express. 2009 Aug 17;17(17):14599-617 - PubMed
  11. Physiol Meas. 2010 Feb;31(2):193-205 - PubMed
  12. J Biomed Opt. 2009 Mar-Apr;14(2):024012 - PubMed
  13. Dermatol Clin. 2009 Oct;27(4):529-33, viii - PubMed
  14. Skin Res Technol. 2007 Feb;13(1):25-33 - PubMed
  15. J Biomed Opt. 2010 Jul-Aug;15(4):046013 - PubMed
  16. J Biomed Opt. 2009 Jan-Feb;14(1):014027 - PubMed
  17. Appl Opt. 1997 Jan 1;36(1):150-5 - PubMed
  18. Skin Res Technol. 2008 Feb;14(1):53-64 - PubMed
  19. Physiol Meas. 2002 Nov;23(4):741-53 - PubMed
  20. Appl Opt. 2009 Jun 20;48(18):3490-6 - PubMed
  21. Cytometry A. 2006 Aug 1;69(8):897-903 - PubMed
  22. Br J Dermatol. 2008 Sep;159(3):567-77 - PubMed
  23. J Biomed Opt. 2007 Sep-Oct;12(5):051604 - PubMed
  24. J Biomed Opt. 2010 Jul-Aug;15(4):046007 - PubMed
  25. Science. 1991 Nov 22;254(5035):1178-81 - PubMed
  26. Int J Microcirc Clin Exp. 1994 Sep-Oct;14(5):274-81 - PubMed
  27. Appl Spectrosc. 2008 Jun;62(6):677-81 - PubMed
  28. Phys Med Biol. 2008 Sep 21;53(18):4995-5009 - PubMed
  29. Skin Res Technol. 2001 Nov;7(4):238-45 - PubMed
  30. Neuroimage. 2010 Feb 1;49(3):2287-303 - PubMed
  31. J Opt Soc Am A Opt Image Sci Vis. 1999 Sep;16(9):2169-76 - PubMed
  32. Med Image Anal. 2003 Dec;7(4):489-502 - PubMed

Publication Types