Display options
Share it on

Nature. 2011 May 12;473(7346):190-3. doi: 10.1038/nature09997. Epub 2011 May 01.

A single-atom quantum memory.

Nature

Holger P Specht, Christian Nölleke, Andreas Reiserer, Manuel Uphoff, Eden Figueroa, Stephan Ritter, Gerhard Rempe

Affiliations

  1. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany.

PMID: 21532588 DOI: 10.1038/nature09997

Abstract

The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180  microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.

References

  1. Phys Rev Lett. 2000 Sep 4;85(10):2208-11 - PubMed
  2. Nature. 2004 Oct 28;431(7012):1075-8 - PubMed
  3. Phys Rev Lett. 1995 Feb 20;74(8):1259-1263 - PubMed
  4. Nature. 2010 Aug 5;466(7307):730-4 - PubMed
  5. Phys Rev Lett. 2001 Oct 15;87(16):167903 - PubMed
  6. Nature. 2010 Jun 10;465(7299):755-8 - PubMed
  7. Phys Rev Lett. 2010 Oct 8;105(15):153603 - PubMed
  8. Phys Rev Lett. 2007 May 11;98(19):193601 - PubMed
  9. Phys Rev Lett. 2006 Jan 27;96(3):030404 - PubMed
  10. Nature. 2011 Jan 27;469(7331):512-5 - PubMed
  11. Nature. 2004 Mar 11;428(6979):153-7 - PubMed
  12. Phys Rev Lett. 2000 Dec 4;85(23):4872-5 - PubMed
  13. Phys Rev Lett. 2009 Jul 24;103(4):043601 - PubMed
  14. Science. 2007 Jul 27;317(5837):488-90 - PubMed
  15. Phys Rev Lett. 2010 May 21;104(20):203601 - PubMed
  16. Nature. 2011 Jan 27;469(7331):508-11 - PubMed
  17. Phys Rev Lett. 2006 Jan 27;96(3):030405 - PubMed
  18. Nature. 2008 Mar 6;452(7183):67-71 - PubMed

Publication Types