Display options
Share it on

Genes Nutr. 2011 Nov;6(4):353-9. doi: 10.1007/s12263-011-0213-2. Epub 2011 Mar 08.

The -308 G/A polymorphism of the tumour necrosis factor-α gene modifies the association between saturated fat intake and serum total cholesterol levels in white South African women.

Genes & nutrition

Yael T Joffe, Lize van der Merwe, Malcolm Collins, Madelaine Carstens, Juliet Evans, Estelle V Lambert, Julia H Goedecke

Affiliations

  1. UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Newlands, Cape Town, South Africa.

PMID: 21484162 PMCID: PMC3197842 DOI: 10.1007/s12263-011-0213-2

Abstract

This study explored interactions between dietary fat intake and the tumour necrosis factor-α gene (TNFA) -308 G/A polymorphism on serum lipids in white South African (SA) women. Normal-weight (N = 88) and obese (N = 60) white SA women underwent measurements of body composition, fat distribution, fasting serum lipids, glucose, insulin concentrations and dietary intake. Subjects were genotyped for the functional -308 G/A polymorphism within the TNFA gene. There were no significant differences in the genotype or allele frequencies between groups, and no significant genotype associations were found for body fatness or distribution, or serum lipid concentrations. However, there was a significant interaction effect between dietary saturated fat (SFA) intake (%E) and TNFA -308 genotypes on serum total cholesterol concentrations (P = 0.047). With increasing SFA intake (%E), serum total cholesterol levels decreased for the GG genotype and increased for the GA plus AA genotypes. The TNFA -308 G/A polymorphism appears to modify the relationship between dietary fat intake and serum total cholesterol concentrations in white SA women.

References

  1. Am J Epidemiol. 2004 Dec 1;160(11):1033-8 - PubMed
  2. Eur J Clin Nutr. 2011 Mar;65(3):285-97 - PubMed
  3. Curr Diab Rep. 2009 Feb;9(1):26-32 - PubMed
  4. Int J Obes Relat Metab Disord. 2003 Dec;27 Suppl 3:S53-5 - PubMed
  5. BMJ. 1998 Apr 18;316(7139):1236-8 - PubMed
  6. J Nutrigenet Nutrigenomics. 2008;1(5):215-23 - PubMed
  7. Nucleic Acids Res. 1991 Oct 11;19(19):5444 - PubMed
  8. J Nutr. 2010 May;140(5):901-7 - PubMed
  9. Int J Obes Relat Metab Disord. 2000 Sep;24(9):1119-30 - PubMed
  10. Am J Clin Nutr. 2002 Aug;76(2):454-9 - PubMed
  11. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3195-9 - PubMed
  12. J Intern Med. 1999 Jun;245(6):621-5 - PubMed
  13. Prostaglandins Leukot Essent Fatty Acids. 2010 Apr-Jun;82(4-6):205-9 - PubMed
  14. Int J Obes Relat Metab Disord. 2000 Nov;24 Suppl 4:S23-7 - PubMed
  15. J Clin Invest. 2006 Jan;116(1):33-5 - PubMed
  16. Diabetes. 1994 Nov;43(11):1271-8 - PubMed
  17. Arterioscler Thromb Vasc Biol. 2005 Oct;25(10):2062-8 - PubMed
  18. Diabetologia. 2000 Jan;43(1):117-20 - PubMed
  19. Clin Chem. 1972 Jun;18(6):499-502 - PubMed
  20. Int J Obes Relat Metab Disord. 2001 Apr;25(4):581-5 - PubMed
  21. Am J Clin Nutr. 2007 Sep;86(3):768-74 - PubMed
  22. Cytokine Growth Factor Rev. 2003 Oct;14(5):447-55 - PubMed
  23. Science. 1993 Jan 1;259(5091):87-91 - PubMed
  24. Am J Hum Genet. 2004 Apr;74(4):765-9 - PubMed
  25. Eur J Nutr. 2002 Oct;41(5):210-21 - PubMed
  26. Atherosclerosis. 1999 Oct;146(2):321-7 - PubMed
  27. Eur J Clin Invest. 1998 Jan;28(1):59-66 - PubMed
  28. Hum Mol Genet. 1992 Aug;1(5):353 - PubMed
  29. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1233-7 - PubMed
  30. Metabolism. 2010 Sep;59(9):1341-50 - PubMed
  31. Metabolism. 1998 Jan;47(1):113-8 - PubMed
  32. Clin Endocrinol (Oxf). 2011 Jan;74(1):51-9 - PubMed

Publication Types