Display options
Share it on

World J Stem Cells. 2009 Dec 31;1(1):22-9. doi: 10.4252/wjsc.v1.i1.22.

Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background.

World journal of stem cells

Ana Claudia Carstea, Melinda K Pirity, Andras Dinnyes

Affiliations

  1. Ana Claudia Carstea, Genetic Reprogramming Group, Agricultural Biotechnology Center, Szent Györgyi A u. 4, H-2100 Gödöllö, Hungary.

PMID: 21607104 PMCID: PMC3097913 DOI: 10.4252/wjsc.v1.i1.22

Abstract

In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.

Keywords: Chimeras; Embryonic stem cells; Epigenetic changes; Germline competence; Induced pluripotent stem cells; Transgenic

References

  1. Biotechniques. 2000 Nov;29(5):1024-8, 1030, 1032 - PubMed
  2. Nature. 2004 Nov 4;432(7013):4 - PubMed
  3. Stem Cells. 2008 Jul;26(7):1883-90 - PubMed
  4. Nat Biotechnol. 2007 Jan;25(1):91-9 - PubMed
  5. Dev Biol. 2005 Dec 1;288(1):150-9 - PubMed
  6. J Biol Chem. 1994 Nov 4;269(44):27155-8 - PubMed
  7. Development. 1998 Jun;125(12):2273-82 - PubMed
  8. Transgenic Res. 2007 Dec;16(6):751-8 - PubMed
  9. Nature. 2007 Jul 19;448(7151):313-7 - PubMed
  10. Nature. 2009 Apr 9;458(7239):766-70 - PubMed
  11. J Virol. 2005 Nov;79(22):13865-74 - PubMed
  12. Biol Reprod. 2009 Jun;80(6):1216-22 - PubMed
  13. Comp Med. 2008 Apr;58(2):145-50 - PubMed
  14. Genetics. 1998 Nov;150(3):1155-68 - PubMed
  15. Mol Reprod Dev. 1990 Apr;25(4):364-8 - PubMed
  16. Biol Reprod. 2003 Sep;69(3):902-14 - PubMed
  17. Cell. 2006 Aug 25;126(4):663-76 - PubMed
  18. Genesis. 2005 May;42(1):47-52 - PubMed
  19. Cell Stem Cell. 2007 Jun 7;1(1):55-70 - PubMed
  20. Nat Biotechnol. 2008 Jan;26(1):101-6 - PubMed
  21. Nature. 1981 Jul 9;292(5819):154-6 - PubMed
  22. Cell. 1987 Nov 6;51(3):503-12 - PubMed
  23. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6209-14 - PubMed
  24. Exp Cell Res. 1991 Dec;197(2):254-8 - PubMed
  25. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8424-8 - PubMed
  26. J Embryol Exp Morphol. 1977 Oct;41:47-64 - PubMed
  27. Nat Methods. 2009 May;6(5):363-9 - PubMed
  28. Nat Biotechnol. 2008 Nov;26(11):1276-84 - PubMed
  29. Contemp Top Lab Anim Sci. 2001 Mar;40(2):31-4 - PubMed
  30. Univ West Ont Law Rev. 1986;24(1):15-37 - PubMed
  31. J Anat. 2005 Jan;206(1):79-92 - PubMed
  32. Nature. 1968 Nov 9;220(5167):596-7 - PubMed
  33. Reproduction. 2008 Nov;136(5):581-7 - PubMed
  34. Exp Anim. 1997 Jan;46(1):17-23 - PubMed
  35. Cell Stem Cell. 2009 Aug 7;5(2):135-8 - PubMed
  36. Transgenic Res. 1997 Sep;6(5):321-8 - PubMed
  37. Development. 1997 Oct;124(20):4105-11 - PubMed
  38. Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4455-60 - PubMed
  39. Mech Dev. 1997 Mar;62(2):137-45 - PubMed
  40. Exp Cell Res. 1985 Apr;157(2):561-6 - PubMed
  41. Development. 1990 Dec;110(4):1341-8 - PubMed
  42. Reproduction. 2005 Jul;130(1):53-9 - PubMed
  43. Dev Dyn. 1997 May;209(1):85-91 - PubMed
  44. Transgenic Res. 2003 Dec;12(6):743-6 - PubMed
  45. In Vitro Cell Dev Biol Anim. 2004 Mar-Apr;40(3-4):76-81 - PubMed
  46. BMC Biotechnol. 2001;1:12 - PubMed
  47. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634-8 - PubMed
  48. Nucleic Acids Res. 2004 Mar 05;32(4):1566-76 - PubMed
  49. Nature. 1971 Jun 11;231(5302):385-6 - PubMed
  50. Science. 2008 Nov 7;322(5903):949-53 - PubMed
  51. Science. 1989 Jun 16;244(4910):1288-92 - PubMed
  52. Mol Reprod Dev. 2005 Jun;71(2):154-8 - PubMed
  53. Stem Cells. 2003;21(1):90-7 - PubMed
  54. Nat Genet. 2005 Nov;37(11):1274-9 - PubMed
  55. Dev Dyn. 2003 Dec;228(4):751-66 - PubMed
  56. In Vitro Cell Dev Biol Anim. 2005 Sep-Oct;41(8-9):278-83 - PubMed
  57. Nature. 2009 Apr 9;458(7239):771-5 - PubMed
  58. Nature. 2008 Jul 3;454(7200):49-55 - PubMed
  59. Science. 2001 Jul 6;293(5527):95-7 - PubMed
  60. Reprod Biol Endocrinol. 2006 Nov 08;4:55 - PubMed
  61. Genesis. 2009 Jun;47(6):414-22 - PubMed
  62. Development. 1990 Nov;110(3):815-21 - PubMed
  63. Nat Biotechnol. 2002 May;20(5):455-9 - PubMed
  64. Nature. 2009 Sep 3;461(7260):86-90 - PubMed
  65. Trends Genet. 2004 Feb;20(2):59-62 - PubMed
  66. FEBS Lett. 2002 Oct 2;529(1):135-41 - PubMed

Publication Types