Display options
Share it on

Small GTPases. 2010 Sep;1(2):118-123. doi: 10.4161/sgtp.1.2.13783.

eIF5 is a dual function GAP and GDI for eukaryotic translational control.

Small GTPases

Martin D Jennings, Graham D Pavitt

Affiliations

  1. Faculty of Life Sciences; The University of Manchester; Manchester UK.

PMID: 21686265 PMCID: PMC3116597 DOI: 10.4161/sgtp.1.2.13783

Abstract

We recently showed in a publication in Nature that the eukaryotic translation initiation factor eIF5 has a second regulatory function and is a GDI (GDP dissociation inhibitor) in addition to its previously characterized role as a GAP (GTPase accelerating protein). These findings provide new insight into the mechanism of translation initiation in eukaryotic cells. Additional findings show that the GDI function is critical for the normal regulation of protein synthesis by phosphorylation of eIF2α at ser51. Because eIF2 phosphorylation is a ubiquitous mode of translational control these results are of broad interest. Here we review these and related studies and suggest they offer further evidence of parallels between the functions of regulators of the translation factor eIF 2 and both heterotrimeric and small GTPases.

References

  1. Nature. 2005 Aug 25;436(7054):1166-73 - PubMed
  2. J Biol Chem. 2010 Jul 9;285(28):21203-7 - PubMed
  3. Genes Dev. 2004 Dec 15;18(24):3078-93 - PubMed
  4. Mol Cell. 2007 Apr 13;26(1):41-50 - PubMed
  5. Science. 1997 Jul 18;277(5324):333-8 - PubMed
  6. Methods Enzymol. 2007;431:1-13 - PubMed
  7. Cell Metab. 2005 Apr;1(4):273-7 - PubMed
  8. EMBO J. 2006 Oct 4;25(19):4537-46 - PubMed
  9. J Biol Chem. 2004 Mar 12;279(11):10584-92 - PubMed
  10. J Biol Chem. 1993 Oct 25;268(30):22259-61 - PubMed
  11. Genes Dev. 2000 Oct 1;14(19):2534-46 - PubMed
  12. Science. 2005 Mar 18;307(5716):1776-8 - PubMed
  13. EMBO J. 1999 Mar 15;18(6):1673-88 - PubMed
  14. Mol Cell Biol. 1997 Mar;17(3):1298-313 - PubMed
  15. Nat Rev Mol Cell Biol. 2010 Feb;11(2):113-27 - PubMed
  16. J Biol Chem. 2006 Apr 7;281(14):9439-49 - PubMed
  17. J Mol Biol. 2009 Oct 2;392(4):937-51 - PubMed
  18. FEBS Lett. 2010 Jan 21;584(2):405-12 - PubMed
  19. Biochemistry. 2003 Jan 28;42(3):811-9 - PubMed
  20. Nature. 2002 Apr 25;416(6883):878-81 - PubMed
  21. Biochem Biophys Res Commun. 1996 Jan 5;218(1):54-60 - PubMed
  22. Biochem Soc Trans. 2005 Dec;33(Pt 6):1487-92 - PubMed
  23. J Mol Biol. 2006 Jul 7;360(2):457-65 - PubMed
  24. Mol Cell. 2005 Oct 28;20(2):251-62 - PubMed
  25. Annu Rev Microbiol. 2005;59:407-50 - PubMed
  26. J Mol Biol. 2009 Sep 25;392(3):701-22 - PubMed
  27. Annu Rev Biochem. 2004;73:925-51 - PubMed
  28. J Mol Biol. 2009 Nov 27;394(2):268-85 - PubMed
  29. Nucleic Acids Res. 2002 Mar 1;30(5):1154-62 - PubMed
  30. Nat Med. 2005 Jul;11(7):757-64 - PubMed
  31. Mol Cell Biol. 2001 Aug;21(15):5018-30 - PubMed
  32. Yeast. 2003 Jan 30;20(2):97-108 - PubMed
  33. Cell. 2000 Feb 4;100(3):345-56 - PubMed
  34. Curr Biol. 2001 Jan 9;11(1):55-9 - PubMed
  35. Nat Genet. 2000 Aug;25(4):406-9 - PubMed
  36. Genes Dev. 1998 Feb 15;12(4):514-26 - PubMed
  37. Genes Dev. 2007 May 15;21(10):1217-30 - PubMed
  38. Nature. 1997 Oct 16;389(6652):758-62 - PubMed
  39. Cell. 2007 Apr 6;129(1):195-206 - PubMed
  40. Mol Cell Biol. 2007 Sep;27(18):6323-33 - PubMed
  41. J Biol Chem. 2006 May 5;281(18):12636-44 - PubMed
  42. Trends Cell Biol. 2005 Jul;15(7):356-63 - PubMed
  43. Science. 1992 Oct 30;258(5083):812-5 - PubMed
  44. J Mol Biol. 2007 Jul 6;370(2):315-30 - PubMed
  45. Biochimie. 2007 Jun-Jul;89(6-7):799-811 - PubMed
  46. Nature. 2010 May 20;465(7296):378-81 - PubMed
  47. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16164-9 - PubMed
  48. Traffic. 2005 Nov;6(11):957-66 - PubMed
  49. Biochem J. 2005 Aug 15;390(Pt 1):1-9 - PubMed
  50. Mol Cell. 2001 Jun;7(6):1153-63 - PubMed
  51. J Biol Chem. 1998 May 22;273(21):12841-5 - PubMed
  52. Biochem Soc Trans. 2009 Dec;37(Pt 6):1298-310 - PubMed

Publication Types

Grant support