Display options
Share it on

J Chem Theory Comput. 2011 Jun 14;7(6):1962-1978. doi: 10.1021/ct200061r. Epub 2011 Apr 25.

Constant pH Molecular Dynamics in Explicit Solvent with λ-Dynamics.

Journal of chemical theory and computation

Serena Donnini, Florian Tegeler, Gerrit Groenhof, Helmut Grubmüller

Affiliations

  1. Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry , Göttingen, Germany.

PMID: 21687785 PMCID: PMC3114466 DOI: 10.1021/ct200061r

Abstract

pH is an important parameter in condensed-phase systems, because it determines the protonation state of titratable groups and thus influences the structure, dynamics, and function of molecules in solution. In most force field simulation protocols, however, the protonation state of a system (rather than its pH) is kept fixed and cannot adapt to changes of the local environment. Here, we present a method, implemented within the MD package GROMACS, for constant pH molecular dynamics simulations in explicit solvent that is based on the λ-dynamics approach. In the latter, the dynamics of the titration coordinate λ, which interpolates between the protonated and deprotonated states, is driven by generalized forces between the protonated and deprotonated states. The hydration free energy, as a function of pH, is included to facilitate constant pH simulations. The protonation states of titratable groups are allowed to change dynamically during a simulation, thus reproducing average protonation probabilities at a certain pH. The accuracy of the method is tested against titration curves of single amino acids and a dipeptide in explicit solvent.

References

  1. J Mol Biol. 1976 May 15;103(2):227-49 - PubMed
  2. Eur Biophys J. 1999;28(7):533-51 - PubMed
  3. Proteins. 2002 Jun 1;47(4):469-80 - PubMed
  4. Biochim Biophys Acta. 1983 Feb 15;742(3):576-85 - PubMed
  5. Proteins. 2000;Suppl 4:8-22 - PubMed
  6. J Phys Chem A. 2011 Apr 28;115(16):4042-53 - PubMed
  7. Methods Enzymol. 2009;466:455-75 - PubMed
  8. Proteins. 2004 Sep 1;56(4):738-52 - PubMed
  9. J Biol Chem. 2006 Jun 23;281(25):17259-17265 - PubMed
  10. Nature. 2008 Jan 31;451(7178):591-5 - PubMed
  11. J Comput Chem. 2005 Dec;26(16):1701-18 - PubMed
  12. Chembiochem. 2009 Jul 20;10(11):1816-22 - PubMed
  13. Biochemistry. 2001 Mar 27;40(12):3413-9 - PubMed
  14. Biosci Rep. 2000 Dec;20(6):501-18 - PubMed
  15. J Chem Phys. 2006 Aug 21;125(7):074115 - PubMed
  16. J Biochem. 2005 Apr;137(4):455-61 - PubMed
  17. Annu Rev Biochem. 1987;56:365-94 - PubMed
  18. Protein Sci. 2006 May;15(5):1214-8 - PubMed
  19. Nat Struct Biol. 2001 Aug;8(8):653-5 - PubMed
  20. Biochemistry. 1990 Jul 17;29(28):6619-25 - PubMed
  21. Nature. 2003 Dec 18;426(6968):884-90 - PubMed
  22. J Phys Chem A. 2006 Jan 19;110(2):631-9 - PubMed
  23. Nature. 2005 Dec 15;438(7070):975-80 - PubMed
  24. Nature. 2008 Jan 31;451(7178):596-9 - PubMed
  25. J Comput Chem. 2004 Oct;25(13):1656-76 - PubMed
  26. J Comput Chem. 2004 Dec;25(16):2038-48 - PubMed
  27. Acc Chem Res. 2002 Jun;35(6):430-7 - PubMed
  28. J Chem Phys. 2005 Jun 8;122(22):224507 - PubMed
  29. Photochem Photobiol Sci. 2006 Jun;5(6):588-96 - PubMed
  30. Biophys J. 2005 Jul;89(1):141-57 - PubMed
  31. Biochemistry. 1990 Nov 6;29(44):10219-25 - PubMed
  32. Nature. 2003 Sep 25;425(6956):393-7 - PubMed

Publication Types