Display options
Share it on

Nutr Metab (Lond). 2011 Jun 15;8(1):38. doi: 10.1186/1743-7075-8-38.

A metabolic link between mitochondrial ATP synthesis and liver glycogen metabolism: NMR study in rats re-fed with butyrate and/or glucose.

Nutrition & metabolism

Jean-Louis Gallis, Henri Gin, Hélène Roumes, Marie-Christine Beauvieux

Affiliations

  1. Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, LabEx TRAIL-IBIO, 146 rue Léo Saignat, F-33076, Bordeaux Cedex, France. [email protected].

PMID: 21676253 PMCID: PMC3141389 DOI: 10.1186/1743-7075-8-38

Abstract

BACKGROUND: Butyrate, end-product of intestinal fermentation, is known to impair oxidative phosphorylation in rat liver and could disturb glycogen synthesis depending on the ATP supplied by mitochondrial oxidative phosphorylation and cytosolic glycolysis.

METHODS: In 48 hr-fasting rats, hepatic changes of glycogen and total ATP contents and unidirectional flux of mitochondrial ATP synthesis were evaluated by ex vivo 31P NMR immediately after perfusion and isolation of liver, from 0 to 10 hours after force-feeding with (butyrate 1.90 mg + glucose 14.0 mg.g-1 body weight) or isocaloric glucose (18.2 mg.g-1 bw); measurements reflected in vivo situation at each time of liver excision. The contribution of energetic metabolism to glycogen metabolism was estimated.

RESULTS: A net linear flux of glycogen synthesis (~11.10 ± 0.60 μmol glucosyl units.h-1.g-1 liver wet weight) occurred until the 6th hr post-feeding in both groups, whereas butyrate delayed it until the 8th hr. A linear correlation between total ATP and glycogen contents was obtained (r2 = 0.99) only during net glycogen synthesis. Mitochondrial ATP turnover, calculated after specific inhibition of glycolysis, was stable (~0.70 ± 0.25 μmol.min-1.g-1 liver ww) during the first two hr whatever the force-feeding, and increased transiently about two-fold at the 3rd hr in glucose. Butyrate delayed the transient increase (1.80 ± 0.33 μmol.min-1.g-1 liver ww) to the 6th hr post-feeding. Net glycogenolysis always appeared after the 8th hr, whereas flux of mitochondrial ATP synthesis returned to near basal level (0.91 ± 0.19 μmol.min-1.g-1 liver ww).

CONCLUSION: In liver from 48 hr-starved rats, the energy need for net glycogen synthesis from exogenous glucose corresponds to ~50% of basal mitochondrial ATP turnover. The evidence of a late and transient increase in mitochondrial ATP turnover reflects an energetic need, probably linked to a glycogen cycling. Butyrate, known to reduce oxidative phosphorylation yield and to induce a glucose-sparing effect, delayed the transient increase in mitochondrial ATP turnover and hence energy contribution to glycogen metabolism.

References

  1. Methods Enzymol. 1975;39:25-36 - PubMed
  2. FASEB J. 1989 Sep;3(11):2277-81 - PubMed
  3. NMR Biomed. 2008 Jun;21(5):437-43 - PubMed
  4. NMR Biomed. 1991 Dec;4(6):279-85 - PubMed
  5. Biochem J. 2001 Sep 15;358(Pt 3):665-71 - PubMed
  6. Biochem J. 1968 Apr;107(3):411-5 - PubMed
  7. Acta Physiol Scand. 1983 May;118(1):69-73 - PubMed
  8. Reprod Nutr Dev. 1990;30(1):1-11 - PubMed
  9. Int J Food Microbiol. 2010 Jun 15;140(2-3):93-101 - PubMed
  10. Nutr Metab (Lond). 2005 Nov 21;2:32 - PubMed
  11. J Biol Chem. 1990 Dec 25;265(36):22097-100 - PubMed
  12. Biochim Biophys Acta. 1987 Sep 10;893(2):225-31 - PubMed
  13. J Nutr. 1986 Jan;116(1):77-86 - PubMed
  14. Am J Physiol. 1999 Dec;277(6):E984-9 - PubMed
  15. Biochemistry (Mosc). 2005 Feb;70(2):159-63 - PubMed
  16. J Appl Physiol (1985). 1999 Oct;87(4):1470-5 - PubMed
  17. Mol Cell Biochem. 2010 Jul;340(1-2):283-9 - PubMed
  18. J Biol Chem. 2005 Apr 22;280(16):16427-36 - PubMed
  19. Clin Nutr. 2001 Apr;20(2):177-9 - PubMed
  20. J Clin Invest. 1999 Feb;103(3):365-72 - PubMed
  21. Hepatology. 1987 Mar-Apr;7(2):315-23 - PubMed
  22. J Biol Chem. 1988 Apr 15;263(11):5027-9 - PubMed
  23. Alcohol Res Health. 2003;27(4):325-30 - PubMed
  24. Clin Nutr. 2009 Dec;28(6):657-61 - PubMed
  25. Hepatology. 2001 Apr;33(4):808-15 - PubMed
  26. FASEB J. 1988 May;2(8):2368-75 - PubMed
  27. Br J Nutr. 1986 May;55(3):487-96 - PubMed
  28. Pathol Biol (Paris). 2008 Jul;56(5):305-9 - PubMed
  29. J Biol Chem. 1983 Dec 10;258(23):14294-308 - PubMed
  30. Biochim Biophys Acta. 2002 Mar 15;1570(2):135-40 - PubMed
  31. BMC Physiol. 2008 Oct 10;8:19 - PubMed
  32. Basic Clin Pharmacol Toxicol. 2004 Oct;95(4):166-74 - PubMed
  33. Diabetes. 2001 Apr;50(4):810-6 - PubMed
  34. Biochim Biophys Acta. 1989 Dec 7;977(3):266-72 - PubMed
  35. BMC Physiol. 2007 Aug 28;7:8 - PubMed
  36. J Nutr. 2001 Jul;131(7):1986-92 - PubMed
  37. J Biol Chem. 2006 Oct 20;281(42):31268-78 - PubMed
  38. J Clin Invest. 1988 Mar;81(3):872-8 - PubMed
  39. Am J Physiol Endocrinol Metab. 2009 Sep;297(3):E578-91 - PubMed
  40. J Clin Invest. 1985 Sep;76(3):1229-36 - PubMed
  41. J Hepatol. 1992 May;15(1-2):192-201 - PubMed
  42. Biochim Biophys Acta. 1991 Oct 26;1095(2):103-13 - PubMed

Publication Types