Display options
Share it on

Int J Pept. 2011;2011:932361. doi: 10.1155/2011/932361. Epub 2011 Sep 29.

Effects of voluntary running in the female mice lateral septum on BDNF and corticotropin-releasing factor receptor 2.

International journal of peptides

Sofia Gustafsson, Wen Liang, Susanne Hilke

Affiliations

  1. Division of Clinical Chemistry, Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden.

PMID: 21977046 PMCID: PMC3184426 DOI: 10.1155/2011/932361

Abstract

Voluntary physical activities are known to modulate anxiety and depressive/like behaviors in both animals and humans. Brain derived neurotrophic factor (BDNF), has been reported to be elevated following exercise. BDNF, as well as type 2 corticotrophin releasing factor receptor (CRFR) 2, has been shown to mediate anxiety-like behavior. In the present study we examined the effects of long-term voluntary exercise on the transcripts for BDNF and CRFR2 in the lateral septum (LS) and for CRF in the central amygdala (CeA) in female mice. Thus, increased activity of CRF in the CeA is associated with anxiety-like behavior. Quantitative RT-PCR was employed to measure levels of mRNA in punch biopsies from LS and CeA. In addition, measurements of the concentration of corticosterone and leptin in plasma were employed. In the LS, we found a three-fold increase of BDNF mRNA (P < 0.05) but no significant change in CRFR2 mRNA. No changes in CRF in the amygdala were observed but we found a decrease in the levels of plasma corticosterone. Plasma leptin and the weight of perigonadal fat pads were decreased following exercise. In conclusion, these data show that BDNF gene expression in the LS is influenced by long-term exercise in females but not CRFR2.

References

  1. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1108-12 - PubMed
  2. Alcohol. 2009 Nov;43(7):491-8 - PubMed
  3. Nat Neurosci. 1999 Mar;2(3):266-70 - PubMed
  4. Nat Med. 1995 Nov;1(11):1155-61 - PubMed
  5. Horm Behav. 2005 Jun;48(1):1-10 - PubMed
  6. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7570-5 - PubMed
  7. J Comp Neurol. 2000 Dec 11;428(2):191-212 - PubMed
  8. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2843-8 - PubMed
  9. Physiol Behav. 1982 Jan;28(1):201-4 - PubMed
  10. Annu Rev Neurosci. 1996;19:289-317 - PubMed
  11. Science. 1981 Sep 18;213(4514):1394-7 - PubMed
  12. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2969-73 - PubMed
  13. J Neuroendocrinol. 2006 Dec;18(12):915-25 - PubMed
  14. J Neurophysiol. 2002 Nov;88(5):2187-95 - PubMed
  15. Front Neuroendocrinol. 2006 Dec;27(4):415-35 - PubMed
  16. J Neural Transm (Vienna). 2009 Jun;116(6):777-84 - PubMed
  17. Neurosci Lett. 2002 Apr 19;323(1):60-4 - PubMed
  18. Nat Genet. 2000 Apr;24(4):415-9 - PubMed
  19. Nature. 1995 Nov 16;378(6554):287-92 - PubMed
  20. Biol Psychiatry. 2006 Jun 15;59(12):1116-27 - PubMed
  21. Nat Genet. 2000 Apr;24(4):410-4 - PubMed
  22. Mol Cell Neurosci. 1993 Dec;4(6):510-25 - PubMed
  23. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):836-40 - PubMed
  24. Mol Psychiatry. 2010 Sep;15(9):877, 896-904 - PubMed
  25. Neurobiol Aging. 2005 Dec;26 Suppl 1:88-93 - PubMed
  26. Nat Med. 2001 May;7(5):605-11 - PubMed
  27. Endocrinology. 2003 Jul;144(7):3012-23 - PubMed
  28. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8967-71 - PubMed

Publication Types