Display options
Share it on

Adv Appl Bioinform Chem. 2008;1:19-28. doi: 10.2147/aabc.s3767. Epub 2008 Aug 12.

A method to enhance the hit ratio by a combination of structure-based drug screening and ligand-based screening.

Advances and applications in bioinformatics and chemistry : AABC

Katsumi Omagari, Daisuke Mitomo, Satoru Kubota, Haruki Nakamura, Yoshifumi Fukunishi

Affiliations

  1. Japan Biological Informatics Consortium (JBiC), Koto-ku, Tokyo, Japan.

PMID: 21918604 PMCID: PMC3169939 DOI: 10.2147/aabc.s3767

Abstract

We examined the procedures to combine two different in silico drug-screening results to achieve a high hit ratio. When the 3D structure of the target protein and some active compounds are known, both structure-based and ligand-based in silico screening methods can be applied. In the present study, the machine-learning score modification multiple target screening (MSM-MTS) method was adopted as a structure-based screening method, and the machine-learning docking score index (ML-DSI) method was adopted as a ligand-based screening method. To combine the predicted compound's sets by these two screening methods, we examined the product of the sets (consensus set) and the sum of the sets. As a result, the consensus set achieved a higher hit ratio than the sum of the sets and than either individual predicted set. In addition, the current combination was shown to be robust enough for the structural diversities both in different crystal structure and in snapshot structures during molecular dynamics simulations.

Keywords: conformation of active site; consensus score; in silico; protein-based screening; protein-ligand docking; screening

References

  1. Proteins. 2002 Dec 1;49(4):457-71 - PubMed
  2. J Mol Graph Model. 2005 Sep;24(1):34-45 - PubMed
  3. J Comput Aided Mol Des. 2008 Mar-Apr;22(3-4):239-55 - PubMed
  4. J Chem Inf Model. 2006 Nov-Dec;46(6):2610-22 - PubMed
  5. J Med Chem. 2003 Oct 23;46(22):4638-47 - PubMed
  6. J Med Chem. 2003 Jun 5;46(12):2287-303 - PubMed
  7. J Mol Graph Model. 2007 Jan;25(5):633-43 - PubMed
  8. J Med Chem. 1999 Dec 16;42(25):5100-9 - PubMed
  9. J Chem Inf Model. 2008 Feb;48(2):426-33 - PubMed
  10. J Chem Inf Model. 2006 May-Jun;46(3):1098-106 - PubMed
  11. J Mol Biol. 1997 Apr 4;267(3):727-48 - PubMed
  12. Proteins. 2004 Jun 1;55(4):942-61 - PubMed
  13. J Comput Aided Mol Des. 2006 Apr;20(4):237-48 - PubMed
  14. Proteins. 2003 Jan 1;50(1):5-25 - PubMed
  15. J Mol Biol. 1996 Aug 23;261(3):470-89 - PubMed
  16. J Chem Inf Model. 2006 Jan-Feb;46(1):380-91 - PubMed
  17. J Chem Inf Model. 2007 Nov-Dec;47(6):2358-65 - PubMed
  18. J Mol Graph Model. 2006 Sep;25(1):61-70 - PubMed
  19. J Chem Inf Model. 2006 Sep-Oct;46(5):2071-84 - PubMed
  20. J Chem Inf Model. 2007 Mar-Apr;47(2):526-34 - PubMed
  21. J Chem Inf Comput Sci. 2001 Sep-Oct;41(5):1422-6 - PubMed
  22. J Chem Inf Comput Sci. 2004 Nov-Dec;44(6):2216-24 - PubMed
  23. J Med Chem. 2003 Jul 3;46(14):2895-907 - PubMed
  24. J Med Chem. 2004 May 20;47(11):2743-9 - PubMed
  25. J Mol Graph Model. 2002 Jan;20(4):281-95 - PubMed
  26. J Med Chem. 2004 Jan 1;47(1):80-9 - PubMed
  27. J Comput Chem. 2005 Jan 15;26(1):11-22 - PubMed
  28. J Med Chem. 2004 Jan 29;47(3):764-7 - PubMed
  29. J Mol Graph Model. 2008 Feb;26(6):1030-3 - PubMed
  30. J Am Chem Soc. 2006 Feb 1;128(4):1233-9 - PubMed
  31. J Med Chem. 2006 Oct 5;49(20):5912-31 - PubMed
  32. J Med Chem. 2004 Aug 26;47(18):4356-9 - PubMed
  33. J Chem Inf Model. 2005 Jul-Aug;45(4):1134-46 - PubMed
  34. J Med Chem. 2006 Jan 26;49(2):523-33 - PubMed

Publication Types