Display options
Share it on

Adv Appl Bioinform Chem. 2008;1:85-98. doi: 10.2147/aabc.s4133. Epub 2008 Oct 30.

A network biology approach evaluating the anticancer effects of bortezomib identifies SPARC as a therapeutic target in adult T-cell leukemia cells.

Advances and applications in bioinformatics and chemistry : AABC

Junko H Ohyashiki, Ryoko Hamamura, Chiaki Kobayashi, Yu Zhang, Kazuma Ohyashiki

Affiliations

  1. Intractable Immune System Disease Research Center, Tokyo Medical University, Tokyo, Japan.

PMID: 21918608 PMCID: PMC3169936 DOI: 10.2147/aabc.s4133

Abstract

There is a need to identify the regulatory gene interaction of anticancer drugs on target cancer cells. Whole genome expression profiling offers promise in this regard, but can be complicated by the challenge of identifying the genes affected by hundreds to thousands of genes that induce changes in expression. A proteasome inhibitor, bortezomib, could be a potential therapeutic agent in treating adult T-cell leukemia (ATL) patients, however, the underlying mechanism by which bortezomib induces cell death in ATL cells via gene regulatory network has not been fully elucidated. Here we show that a Bayesian statistical framework by VoyaGene(®) identified a secreted protein acidic and rich in cysteine (SPARC) gene, a tumor-invasiveness related gene, as a possible modulator of bortezomib-induced cell death in ATL cells. Functional analysis using RNAi experiments revealed that inhibition of the expression SPARC by siRNA enhanced the apoptotic effect of bortezomib on ATL cells in accordance with an increase of cleaved caspase 3. Targeting SPARC may help to treat ATL patients in combination with bortezomib. This work shows that a network biology approach can be used advantageously to identify the genetic interaction related to anticancer effects.

Keywords: SPARC; adult T cell leukemia; bortezomib; network biology

References

  1. Leuk Lymphoma. 1997 Jul;26(3-4):327-35 - PubMed
  2. Leukemia. 2006 Aug;20(8):1341-52 - PubMed
  3. Nat Genet. 2005 Mar;37(3):243-53 - PubMed
  4. Oncogene. 2005 Jan 13;24(3):419-30 - PubMed
  5. Cancer Res. 2004 Mar 15;64(6):2039-46 - PubMed
  6. J Dermatol. 2003 Sep;30(9):641-3 - PubMed
  7. Int J Cancer. 2006 Jan 15;118(2):310-6 - PubMed
  8. Int J Mol Med. 2005 Aug;16(2):263-8 - PubMed
  9. J Clin Oncol. 2005 Jan 20;23(3):630-9 - PubMed
  10. Br J Haematol. 2003 Sep;122(5):728-44 - PubMed
  11. Cancer Res. 2005 Jun 1;65(11):4467-70 - PubMed
  12. Oncogene. 2007 Dec 13;26(57):7859-71 - PubMed
  13. Mol Syst Biol. 2007;3:82 - PubMed
  14. Biochem Biophys Res Commun. 2005 Oct 21;336(2):469-77 - PubMed
  15. Matrix Biol. 2001 Jan;19(8):816-27 - PubMed
  16. Br J Cancer. 2006 Feb 27;94(4):599-608 - PubMed
  17. Cancer Res. 2005 May 15;65(10):4051-8 - PubMed
  18. J Bioinform Comput Biol. 2004 Sep;2(3):533-50 - PubMed
  19. J Clin Oncol. 2007 Jan 20;25(3):319-25 - PubMed
  20. Br J Cancer. 2007 Oct 22;97(8):1099-105 - PubMed
  21. Bioinformatics. 2006 Apr 1;22(7):815-22 - PubMed
  22. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3448-52 - PubMed
  23. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14374-9 - PubMed
  24. Biochem Biophys Res Commun. 2001 Sep 21;287(2):422-6 - PubMed
  25. Nat Biotechnol. 2005 Feb;23(2):238-43 - PubMed
  26. Leukemia. 1998 Jun;12(6):1001 - PubMed
  27. Leukemia. 2004 Aug;18(8):1357-63 - PubMed

Publication Types