Display options
Share it on

Cryst Growth Des. 2011 Aug 03;11(8):3504-3511. doi: 10.1021/cg200663v.

Inorganic-Organic Nanocomposite Assembly Using Collagen as Template and Sodium Tripolyphosphate as A Biomimetic Analog of Matrix Phosphoprotein.

Crystal growth & design

Lin Dai, Yi-Pin Qi, Li-Na Niu, Yan Liu, Cesar R Pucci, Stephen W Looney, Jun-Qi Ling, David H Pashley, Franklin R Tay

Affiliations

  1. Department of Stomatology, The First Hospital of Wuhan, Wuhan (China).

PMID: 21857797 PMCID: PMC3156482 DOI: 10.1021/cg200663v

Abstract

Nanocomposites created with polycarboxylic acid alone as a stabilization agent for prenucleation clusters-derived amorphous calcium phosphate exhibit non-periodic apatite deposition. In the present study, we report the use of inorganic polyphosphate as a biomimetic analog of matrix phosphoprotein for directing polyacrylic acid-stabilized amorphous nanoprecursor phases to assemble into periodic apatite-collagen nanocomposites. The sorption and desorption characteristics of sodium tripolyphosphate to type I collagen was examined. Periodic nanocomposite assembly with collagen as a template was demonstrated with TEM and SEM using a Portland cement-based resin composite and a phosphate-containing simulated body fluid. Apatite was detected within the collagen at 24 hours and became more distinct at 48 hours, with prenucleation clusters attaching to the collagen fibril surface during the initial infiltration stage. Apatite-collagen nanocomposites at 72 hours were heavily mineralized with periodically-arranged intrafibrillar apatite platelets. Defect-containing nanocomposites caused by desorption of TPP from collagen fibrils were observed in regions lacking the inorganic phase.

References

  1. Nano Today. 2010 Aug 1;5(4):254-266 - PubMed
  2. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17741-6 - PubMed
  3. Biomaterials. 2008 Mar;29(8):1127-37 - PubMed
  4. Biophys J. 2000 Oct;79(4):1737-46 - PubMed
  5. Chem Rev. 2008 Nov;108(11):4754-83 - PubMed
  6. FASEB J. 1992 Feb 1;6(3):879-85 - PubMed
  7. Chem Rev. 2008 Nov;108(11):4551-627 - PubMed
  8. Macromol Biosci. 2005 Sep 16;5(9):821-8 - PubMed
  9. Calcif Tissue Res. 1978 Aug 18;25(3):209-16 - PubMed
  10. Anat Rec. 1989 Jun;224(2):139-53 - PubMed
  11. Cryst Growth Des. 2008 Aug;8(8):3084-3090 - PubMed
  12. J Biol Chem. 1979 Nov 10;254(21):10710-4 - PubMed
  13. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9822-6 - PubMed
  14. Small. 2010 Oct 18;6(20):2230-5 - PubMed
  15. Biomaterials. 2010 Sep;31(25):6618-27 - PubMed
  16. Biomaterials. 2011 Feb;32(5):1291-300 - PubMed
  17. Science. 2005 Aug 12;309(5737):1027-8 - PubMed
  18. Nat Mater. 2010 Dec;9(12):1004-9 - PubMed
  19. Nat Mater. 2009 Oct;8(10):781-92 - PubMed
  20. Nat Mater. 2010 Dec;9(12):1010-4 - PubMed
  21. Artif Organs. 2003 May;27(5):437-43 - PubMed
  22. Nat Mater. 2010 Dec;9(12):960-1 - PubMed
  23. Chemistry. 2004 Jan 5;10(1):28-41 - PubMed
  24. Chem Rev. 2008 Nov;108(11):4694-715 - PubMed
  25. J Biomed Mater Res. 1990 Jun;24(6):721-34 - PubMed
  26. J Biol Chem. 1985 Mar 25;260(6):3451-5 - PubMed

Publication Types

Grant support