Display options
Share it on

Nat Phys. 2010 Oct;6(10):801-805. doi: 10.1038/nphys1757.

Self-organized criticality occurs in non-conservative neuronal networks during Up states.

Nature physics

Daniel Millman, Stefan Mihalas, Alfredo Kirkwood, Ernst Niebur

Affiliations

  1. Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218, USA.

PMID: 21804861 PMCID: PMC3145974 DOI: 10.1038/nphys1757

Abstract

During sleep, under anesthesia and in vitro, cortical neurons in sensory, motor, association and executive areas fluctuate between Up and Down states (UDS) characterized by distinct membrane potentials and spike rates [1, 2, 3, 4, 5]. Another phenomenon observed in preparations similar to those that exhibit UDS, such as anesthetized rats [6], brain slices and cultures devoid of sensory input [7], as well as awake monkey cortex [8] is self-organized criticality (SOC). This is characterized by activity "avalanches" whose size distributions obey a power law with critical exponent of about [Formula: see text] and branching parameter near unity. Recent work has demonstrated SOC in conservative neuronal network models [9, 10], however critical behavior breaks down when biologically realistic non-conservatism is introduced [9]. We here report robust SOC behavior in networks of non-conservative leaky integrate-and-fire neurons with short-term synaptic depression. We show analytically and numerically that these networks typically have 2 stable activity levels corresponding to Up and Down states, that the networks switch spontaneously between them, and that Up states are critical and Down states are subcritical.

References

  1. Front Neurosci. 2007 Oct 15;1(1):57-66 - PubMed
  2. Phys Rev Lett. 2005 Feb 11;94(5):058101 - PubMed
  3. Neural Comput. 2009 Mar;21(3):704-18 - PubMed
  4. Nat Neurosci. 2006 Nov;9(11):1359-61 - PubMed
  5. J Neurosci. 2003 Nov 12;23(32):10388-401 - PubMed
  6. J Neurophysiol. 1995 Jan;73(1):20-38 - PubMed
  7. Trends Neurosci. 2007 Jul;30(7):334-42 - PubMed
  8. Neuron. 1999 Feb;22(2):361-74 - PubMed
  9. Neuron. 2004 Sep 30;44(1):121-33 - PubMed
  10. Annu Rev Neurosci. 2004;27:509-47 - PubMed
  11. PLoS Comput Biol. 2006 Mar;2(3):e23 - PubMed
  12. J Neurosci. 2003 Dec 3;23(35):11167-77 - PubMed
  13. Neuron. 1997 Jun;18(6):995-1008 - PubMed
  14. PLoS One. 2008;3(12):e3971 - PubMed
  15. Science. 1998 Sep 18;281(5384):1840-2 - PubMed
  16. Neuron. 2005 Dec 8;48(5):811-23 - PubMed
  17. Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15921-6 - PubMed
  18. Phys Rev Lett. 2009 Mar 20;102(11):118110 - PubMed
  19. Nature. 2003 May 15;423(6937):283-8 - PubMed
  20. J Neurosci. 1993 Aug;13(8):3252-65 - PubMed
  21. Phys Rev Lett. 1987 Jul 27;59(4):381-384 - PubMed
  22. Proc Natl Acad Sci U S A. 2008 May 27;105(21):7576-81 - PubMed
  23. J Neurosci. 1998 Jan 1;18(1):266-83 - PubMed
  24. Trends Neurosci. 2007 Mar;30(3):101-10 - PubMed
  25. J Comput Neurosci. 2000 May-Jun;8(3):183-208 - PubMed
  26. J Neurophysiol. 1994 Jan;71(1):17-32 - PubMed
  27. J Neurophysiol. 1997 Apr;77(4):1697-715 - PubMed

Publication Types

Grant support