Display options
Share it on

Front Pharmacol. 2010 Dec 06;1:139. doi: 10.3389/fphar.2010.00139. eCollection 2010.

A Comparative Study of Embedded and Anesthetized Zebrafish in vivo on Myocardiac Calcium Oscillation and Heart Muscle Contraction.

Frontiers in pharmacology

Brian S Muntean, Christine M Horvat, James H Behler, Wissam A Aboualaiwi, Andromeda M Nauli, Frederick E Williams, Surya M Nauli

Affiliations

  1. Department of Pharmacology, Colleges of Pharmacy and Medicine, The University of Toledo Toledo, OH, USA.

PMID: 21833178 PMCID: PMC3153013 DOI: 10.3389/fphar.2010.00139

Abstract

The zebrafish (Danio rerio) has been used as a model for studying vertebrate development in the cardiovascular system. In order to monitor heart contraction and cytosolic calcium oscillations, fish were either embedded in methylcellulose or anesthetized with tricaine. Using high-resolution differential interference contrast and calcium imaging microscopy, we here show that dopamine and verapamil alter calcium signaling and muscle contraction in anesthetized zebrafish, but not in embedded zebrafish. In anesthetized fish, dopamine increases the amplitude of cytosolic calcium oscillation with a subsequent increase in heart contraction, whereas verapamil decreases the frequency of calcium oscillation and heart rate. Interestingly, verapamil also increases myocardial contraction. Our data further indicate that verapamil can increase myocardial calcium sensitivity in anesthetized fish. Taken together, our data reinforce in vivo cardiac responses to dopamine and verapamil. Furthermore, effects of dopamine and verapamil on myocardial calcium and contraction are greater in anesthetized than embedded fish. We suggest that while the zebrafish is an excellent model for a cardiovascular imaging study, the cardio-pharmacological profiles are very different between anesthetized and embedded fish.

Keywords: calcium sensitivity; myogenic tone; vascular reflex

References

  1. Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H1019-28 - PubMed
  2. Circ Res. 2009 Apr 10;104(7):860-9 - PubMed
  3. Lab Anim (NY). 2006 Oct;35(9):41-7 - PubMed
  4. Nat Chem Biol. 2005 Oct;1(5):263-4 - PubMed
  5. Acta Physiol Scand. 1998 Dec;164(4):373-80 - PubMed
  6. Science. 2000 Dec 1;290(5497):1671b - PubMed
  7. PLoS Biol. 2008 May 13;6(5):e109 - PubMed
  8. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17699-704 - PubMed
  9. Science. 2004 Aug 13;305(5686):1007-9 - PubMed
  10. Aquat Toxicol. 2003 Jul 16;64(2):177-84 - PubMed
  11. Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H413-20 - PubMed
  12. Br J Pharmacol. 1980;71(2):585-96 - PubMed
  13. Am J Physiol Heart Circ Physiol. 2003 Apr;284(4):H1152-60 - PubMed
  14. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17705-10 - PubMed
  15. Neurotoxicol Teratol. 2004 Nov-Dec;26(6):757-68 - PubMed
  16. Development. 2006 Mar;133(6):1125-32 - PubMed
  17. J Cell Sci. 1998 Jun;111 ( Pt 12):1613-22 - PubMed
  18. Circulation. 2008 Mar 4;117(9):1161-71 - PubMed
  19. Circulation. 2003 Mar 18;107(10):1355-8 - PubMed
  20. Anestezjol Intens Ter. 2008 Oct-Dec;40(4):223-6 - PubMed
  21. Can J Physiol Pharmacol. 1994 Nov;72(11):1380-5 - PubMed
  22. Am J Physiol Cell Physiol. 2001 Dec;281(6):C1785-96 - PubMed
  23. J Clin Pharmacol. 1989 Mar;29(3):207-11 - PubMed
  24. Nat Genet. 2002 May;31(1):106-10 - PubMed
  25. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11316-21 - PubMed
  26. J Hum Hypertens. 2002 Mar;16 Suppl 1:S13-7 - PubMed
  27. Hum Mol Genet. 2009 Apr 15;18(R1):R107-12 - PubMed
  28. Heart Dis. 2001 Jan-Feb;3(1):55-62 - PubMed
  29. J Zoo Wildl Med. 1999 Mar;30(1):2-10 - PubMed
  30. J Auton Pharmacol. 1998 Apr;18(2):115-21 - PubMed
  31. Am J Physiol. 1999 Feb;276(2):R505-13 - PubMed
  32. Front Biosci. 2008 Jan 01;13:1866-80 - PubMed
  33. Bioessays. 2003 Sep;25(9):904-12 - PubMed

Publication Types

Grant support