Display options
Share it on

Front Neurosci. 2011 Sep 27;5:107. doi: 10.3389/fnins.2011.00107. eCollection 2011.

Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: I. Co-regulation by activity.

Frontiers in neuroscience

Benedikt Römer, Julia Krebs, Rupert W Overall, Klaus Fabel, Harish Babu, Linda Overstreet-Wadiche, Moritz D Brandt, Robert W Williams, Sebastian Jessberger, Gerd Kempermann

Affiliations

  1. Genomics of Regeneration, Center for Regenerative Therapies Dresden Dresden, Germany.

PMID: 21991243 PMCID: PMC3180604 DOI: 10.3389/fnins.2011.00107

Abstract

BESIDES THE MASSIVE PLASTICITY AT THE LEVEL OF SYNAPSES, WE FIND IN THE HIPPOCAMPUS OF ADULT MICE AND RATS TWO SYSTEMS WITH VERY STRONG MACROSCOPIC STRUCTURAL PLASTICITY: adult neurogenesis, that is the lifelong generation of new granule cells, and dynamic changes in the mossy fibers linking the dentate gyrus to area CA3. In particular the anatomy of the infrapyramidal mossy fiber tract (IMF) changes in response to a variety of extrinsic and intrinsic stimuli. Because mossy fibers are the axons of granule cells, the question arises whether these two types of plasticity are linked. Using immunohistochemistry for markers associated with axonal growth and pro-opiomelanocortin (POMC)-GFP mice to visualize the post-mitotic maturation phase of adult hippocampal neurogenesis, we found that newly generated mossy fibers preferentially but not exclusively contribute to the IMF. The neurogenic stimulus of an enriched environment increased the volume of the IMF. In addition, the IMF grew with a time course consistent with axonal outgrowth from the newborn neurons after the induction of neurogenic seizures using kainate. These results indicate that two aspects of plasticity in the adult hippocampus, mossy fiber size and neurogenesis, are related and may share underlying mechanisms. In a second part of this study, published separately (Krebs et al., 2011) we have addressed the question of whether there is a shared genetics underlying both traits.

Keywords: depression; hippocampus; learning and memory; schizophrenia; stem cell

References

  1. Brain Res. 1987 Nov 3;425(1):182-5 - PubMed
  2. Hippocampus. 1999;9(3):321-32 - PubMed
  3. Exp Brain Res. 1992;92(1):69-78 - PubMed
  4. Front Neurosci. 2011 Sep 21;5:106 - PubMed
  5. J Comp Neurol. 2002 Oct 14;452(2):139-53 - PubMed
  6. Science. 1981 Nov 13;214(4522):817-9 - PubMed
  7. J Neurophysiol. 1997 Aug;78(2):703-20 - PubMed
  8. PLoS Biol. 2007 Aug;5(8):e214 - PubMed
  9. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10432-7 - PubMed
  10. Cell. 2003 May 2;113(3):285-99 - PubMed
  11. Nat Neurosci. 2008 Aug;11(8):901-7 - PubMed
  12. Hippocampus. 1991 Jul;1(3):315-28 - PubMed
  13. Nat Neurosci. 2001 Nov;4 Suppl:1207-14 - PubMed
  14. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4103-8 - PubMed
  15. Nature. 2004 May 13;429(6988):184-7 - PubMed
  16. J Comp Neurol. 2001 Feb 12;430(3):357-68 - PubMed
  17. J Comp Neurol. 1970 Apr;138(4):433-49 - PubMed
  18. Hippocampus. 2000;10(1):17-30 - PubMed
  19. J Neurosci. 1993 Jun;13(6):2351-8 - PubMed
  20. J Neurosci. 1997 May 15;17(10):3727-38 - PubMed
  21. Neuroscience. 1990;34(2):293-8 - PubMed
  22. Mol Cell Neurosci. 2003 Nov;24(3):603-13 - PubMed
  23. Behav Brain Res. 1990 Dec 7;41(1):61-70 - PubMed
  24. J Neurosci. 2005 Nov 2;25(44):10074-86 - PubMed
  25. J Neural Transm (Vienna). 2000;107(2):133-43 - PubMed
  26. Nature. 2008 Feb 21;451(7181):1004-7 - PubMed
  27. Behav Brain Funct. 2005 Apr 22;1(1):3 - PubMed
  28. Neurosci Lett. 1989 May 8;99(3):345-50 - PubMed
  29. Behav Genet. 1997 Jan;27(1):67-73 - PubMed
  30. J Comp Neurol. 2003 Dec 22;467(4):455-63 - PubMed
  31. J Neurosci. 2007 Aug 29;27(35):9400-7 - PubMed
  32. J Comp Neurol. 1975 Jan 15;159(2):149-75 - PubMed
  33. PLoS One. 2009;4(5):e5464 - PubMed
  34. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4398-403 - PubMed
  35. Nat Neurosci. 1999 Mar;2(3):260-5 - PubMed
  36. Neuron. 2007 May 24;54(4):559-66 - PubMed
  37. Nature. 1997 Apr 3;386(6624):493-5 - PubMed
  38. J Neurobiol. 2000 Feb 5;42(2):248-57 - PubMed
  39. Brain Res. 1998 Apr 20;790(1-2):52-9 - PubMed
  40. PLoS Biol. 2006 Nov;4(12):e409 - PubMed
  41. J Neurosci. 2004 Mar 31;24(13):3251-9 - PubMed
  42. Behav Brain Res. 1996 Nov;81(1-2):61-8 - PubMed
  43. Behav Brain Res. 1989 Feb 1;32(1):75-80 - PubMed
  44. Hippocampus. 1993 Jan;3(1):1-7 - PubMed
  45. Neurosci Lett. 1998 May 29;248(2):73-6 - PubMed
  46. Nat Neurosci. 2006 Jun;9(6):723-7 - PubMed
  47. J Neurosci. 2007 May 30;27(22):6037-44 - PubMed
  48. Eur J Neurosci. 2005 Jan;21(1):1-14 - PubMed
  49. Nat Neurosci. 2007 Mar;10(3):355-62 - PubMed
  50. PLoS One. 2008 Apr 09;3(4):e1959 - PubMed
  51. Hippocampus. 1994 Feb;4(1):53-63 - PubMed
  52. Physiology (Bethesda). 2004 Oct;19:253-61 - PubMed
  53. J Neurosci. 2006 Jan 4;26(1):3-11 - PubMed
  54. Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3967-72 - PubMed
  55. Behav Genet. 1988 Mar;18(2):153-65 - PubMed
  56. Science. 1984 Jul 6;225(4657):80-2 - PubMed
  57. J Comp Neurol. 1990 Nov 15;301(3):365-81 - PubMed
  58. J Comp Neurol. 1989 Feb 8;280(2):183-96 - PubMed

Publication Types

Grant support