Display options
Share it on

J Am Chem Soc. 2011 Oct 05;133(39):15786-94. doi: 10.1021/ja207409q. Epub 2011 Sep 13.

Understanding the electronic structure of 4d metal complexes: from molecular spinors to L-edge spectra of a di-Ru catalyst.

Journal of the American Chemical Society

Igor Alperovich, Grigory Smolentsev, Dooshaye Moonshiram, Jonah W Jurss, Javier J Concepcion, Thomas J Meyer, Alexander Soldatov, Yulia Pushkar

Affiliations

  1. Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States.

PMID: 21866913 DOI: 10.1021/ja207409q

Abstract

L(2,3)-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru(III)(2)O(H(2)O)(2)(bpy)(4)](4+) water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH(3))(6)](3+) model complex show considerably different splitting of the Ru L(2,3) absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L(2,3)-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L(2,3)-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH(3))(6)](3+) model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.

Publication Types