Display options
Share it on

Indian J Pharmacol. 2011 Sep;43(5):492-501. doi: 10.4103/0253-7613.84947.

Inverse agonism and its therapeutic significance.

Indian journal of pharmacology

Gurudas Khilnani, Ajeet Kumar Khilnani

Affiliations

  1. Department of Pharmacology, RNT Medical College, Udaipur, India.

PMID: 22021988 PMCID: PMC3195115 DOI: 10.4103/0253-7613.84947

Abstract

A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H(1) and H(2) antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D(2) receptors antagonist), antihypertensive (AT(1) receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT(2A) inverse agonist, attenuates psychosis in patients with Parkinson's disease with psychosis and is devoid of extrapyramidal side effects. This dissociation is also evident from the development of anxioselective benzodiazepines devoid of habit-forming potential. Hemopressin is a peptide ligand that acts as an antagonist as well as inverse agonist. This agent acts as an antinociceptive agent in different in vivo models of pain. Treatment of obesity by drugs having inverse agonist activity at CB(1/2) receptors is also underway. An exciting development is evaluation of β-blockers in chronic bronchial asthma-a condition akin to congestive heart failure where β-blockade has become the standard mode of therapy. Synthesis and evaluation of selective agents is underway. Therefore, inverse agonism is an important aspect of drug-receptor interaction and has immense untapped therapeutic potential.

Keywords: Constitutive activity; G-protein-coupled receptors; inverse agonism; inverse agonists

References

  1. Expert Rev Neurother. 2002 Mar;2(2):261-9 - PubMed
  2. Science. 1982 Jun 11;216(4551):1241-3 - PubMed
  3. Br J Pharmacol. 2008 Oct;155(4):494-504 - PubMed
  4. Br J Pharmacol. 1999 Jul;127(5):1099-104 - PubMed
  5. Mol Pharmacol. 2003 Aug;64(2):512-20 - PubMed
  6. Trends Pharmacol Sci. 2006 Feb;27(2):92-6 - PubMed
  7. J Pharmacol Exp Ther. 2000 Oct;295(1):226-32 - PubMed
  8. J Clin Invest. 2001 Apr;107(8):947-8 - PubMed
  9. Life Sci. 1994;54(20):PL339-50 - PubMed
  10. N Engl J Med. 2010 Apr 1;362(13):1169-71 - PubMed
  11. Mol Pharmacol. 2001 Mar;59(3):532-42 - PubMed
  12. Sleep. 2008 Dec;31(12):1663-71 - PubMed
  13. Eur J Pharmacol. 2000 Oct 6;406(1):R1-3 - PubMed
  14. Circulation. 2000 Apr 11;101(14):1634-7 - PubMed
  15. Endocrinology. 2004 Nov;145(11):5157-67 - PubMed
  16. Am J Respir Cell Mol Biol. 2008 Mar;38(3):256-62 - PubMed
  17. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7321-5 - PubMed
  18. Annu Rev Pharmacol Toxicol. 2002;42:349-79 - PubMed
  19. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4948-53 - PubMed
  20. Neuropsychopharmacology. 2010 Mar;35(4):881-92 - PubMed
  21. Annu Rev Med. 2004;55:27-39 - PubMed
  22. Circulation. 2000 Apr 11;101(14):1707-14 - PubMed
  23. Eur J Neurosci. 2003 Jan;17(2):307-14 - PubMed
  24. Psychopharmacology (Berl). 2005 May;179(2):461-9 - PubMed
  25. Mol Pharmacol. 1994 Mar;45(3):490-9 - PubMed
  26. Psychopharmacology (Berl). 1994 Jul;115(3):325-31 - PubMed
  27. Psychopharmacology (Berl). 2009 Mar;202(4):673-87 - PubMed
  28. Neuropharmacology. 2007 Sep;53(4):574-82 - PubMed
  29. J Pharmacol Exp Ther. 2004 Apr;309(1):102-8 - PubMed
  30. Clin Exp Allergy. 2002 Apr;32(4):489-98 - PubMed
  31. Neurosci Biobehav Rev. 2001 Mar;25(2):193-201 - PubMed
  32. Cancer Chemother Pharmacol. 2006 Jul;58(1):50-61 - PubMed
  33. Drugs. 2003;63(16):1697-741 - PubMed
  34. Mol Pharmacol. 2003 Dec;64(6):1357-69 - PubMed
  35. Nature. 2000 Dec 14;408(6814):860-4 - PubMed
  36. Science. 1990 Aug 10;249(4969):655-9 - PubMed
  37. J Biol Chem. 2004 Aug 13;279(33):34431-9 - PubMed
  38. J Pharmacol Exp Ther. 1998 Apr;285(1):119-26 - PubMed
  39. N Engl J Med. 2004 Nov 18;351(21):2203-17 - PubMed
  40. Clin Pharmacol Ther. 1976 May;19(5 Pt 1):493-501 - PubMed
  41. J Psychiatry Neurosci. 1994 Jan;19(1):24-9 - PubMed
  42. Trends Pharmacol Sci. 2001 Jun;22(6):273-6 - PubMed
  43. Circulation. 1996 Dec 1;94(11):2817-25 - PubMed
  44. Hypertens Res. 2009 Oct;32(10):875-83 - PubMed
  45. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2719-23 - PubMed
  46. Naunyn Schmiedebergs Arch Pharmacol. 2008 Aug;378(2):149-69 - PubMed
  47. Br J Pharmacol. 2000 Jul;130(5):1131-9 - PubMed
  48. J Neural Transm (Vienna). 1996;103(10):1163-75 - PubMed
  49. Am J Gastroenterol. 1999 Feb;94(2):351-7 - PubMed
  50. Mol Pharmacol. 2000 Nov;58(5):887-94 - PubMed
  51. Br J Pharmacol. 2005 May;145(1):34-42 - PubMed
  52. Mol Pharmacol. 2001 Jul;60(1):53-62 - PubMed
  53. Naunyn Schmiedebergs Arch Pharmacol. 2008 Jun;377(4-6):393-9 - PubMed
  54. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20588-93 - PubMed
  55. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11354-8 - PubMed
  56. Cochrane Database Syst Rev. 2002;(1):CD002992 - PubMed
  57. Clin Exp Pharmacol Physiol. 2007 Mar;34(3):161-5 - PubMed
  58. N Engl J Med. 2001 May 31;344(22):1659-67 - PubMed
  59. Life Sci. 1996 May 24;58(26):PL381-9 - PubMed
  60. FASEB J. 2001 Mar;15(3):598-611 - PubMed
  61. Behav Pharmacol. 2003 Dec;14(8):573-82 - PubMed
  62. Br J Pharmacol. 1999 Feb;126(3):665-72 - PubMed
  63. Br J Pharmacol. 2008 Jan;153(2):226-39 - PubMed
  64. Eur Heart J. 1996 Apr;17 Suppl B:8-16 - PubMed
  65. Mol Pharmacol. 2001 Oct;60(4):712-7 - PubMed
  66. Circulation. 2000 Aug 1;102(5):484-6 - PubMed

Publication Types